Optimal. Leaf size=32 \[ \left (e^{\frac {2 x \left (-x+x^2\right )}{\log (3 x)}} x+x^2\right ) \left (-1+(2+x)^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 10.13, antiderivative size = 133, normalized size of antiderivative = 4.16, number of steps used = 5, number of rules used = 3, integrand size = 113, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {6742, 14, 2288} \begin {gather*} x^4+4 x^3+3 x^2+\frac {e^{-\frac {2 (1-x) x^2}{\log (3 x)}} \left (-x^5+3 x^5 \log (3 x)-3 x^4+10 x^4 \log (3 x)+x^3+x^3 \log (3 x)+3 x^2-6 x^2 \log (3 x)\right )}{\left (\frac {x^2}{\log (3 x)}+\frac {(1-x) x}{\log ^2(3 x)}-\frac {2 (1-x) x}{\log (3 x)}\right ) \log ^2(3 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2288
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (2 x \left (3+6 x+2 x^2\right )+\frac {e^{\frac {2 (-1+x) x^2}{\log (3 x)}} \left (6 x^2+2 x^3-6 x^4-2 x^5-12 x^2 \log (3 x)+2 x^3 \log (3 x)+20 x^4 \log (3 x)+6 x^5 \log (3 x)+3 \log ^2(3 x)+8 x \log ^2(3 x)+3 x^2 \log ^2(3 x)\right )}{\log ^2(3 x)}\right ) \, dx\\ &=2 \int x \left (3+6 x+2 x^2\right ) \, dx+\int \frac {e^{\frac {2 (-1+x) x^2}{\log (3 x)}} \left (6 x^2+2 x^3-6 x^4-2 x^5-12 x^2 \log (3 x)+2 x^3 \log (3 x)+20 x^4 \log (3 x)+6 x^5 \log (3 x)+3 \log ^2(3 x)+8 x \log ^2(3 x)+3 x^2 \log ^2(3 x)\right )}{\log ^2(3 x)} \, dx\\ &=\frac {e^{-\frac {2 (1-x) x^2}{\log (3 x)}} \left (3 x^2+x^3-3 x^4-x^5-6 x^2 \log (3 x)+x^3 \log (3 x)+10 x^4 \log (3 x)+3 x^5 \log (3 x)\right )}{\left (\frac {(1-x) x}{\log ^2(3 x)}-\frac {2 (1-x) x}{\log (3 x)}+\frac {x^2}{\log (3 x)}\right ) \log ^2(3 x)}+2 \int \left (3 x+6 x^2+2 x^3\right ) \, dx\\ &=3 x^2+4 x^3+x^4+\frac {e^{-\frac {2 (1-x) x^2}{\log (3 x)}} \left (3 x^2+x^3-3 x^4-x^5-6 x^2 \log (3 x)+x^3 \log (3 x)+10 x^4 \log (3 x)+3 x^5 \log (3 x)\right )}{\left (\frac {(1-x) x}{\log ^2(3 x)}-\frac {2 (1-x) x}{\log (3 x)}+\frac {x^2}{\log (3 x)}\right ) \log ^2(3 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 40, normalized size = 1.25 \begin {gather*} 3 x^2+4 x^3+x^4+e^{\frac {2 (-1+x) x^2}{\log (3 x)}} x \left (3+4 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.18, size = 45, normalized size = 1.41 \begin {gather*} x^{4} + 4 \, x^{3} + 3 \, x^{2} + {\left (x^{3} + 4 \, x^{2} + 3 \, x\right )} e^{\left (\frac {2 \, {\left (x^{3} - x^{2}\right )}}{\log \left (3 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.16, size = 80, normalized size = 2.50 \begin {gather*} x^{4} + x^{3} e^{\left (\frac {2 \, {\left (x^{3} - x^{2}\right )}}{\log \left (3 \, x\right )}\right )} + 4 \, x^{3} + 4 \, x^{2} e^{\left (\frac {2 \, {\left (x^{3} - x^{2}\right )}}{\log \left (3 \, x\right )}\right )} + 3 \, x^{2} + 3 \, x e^{\left (\frac {2 \, {\left (x^{3} - x^{2}\right )}}{\log \left (3 \, x\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 43, normalized size = 1.34
method | result | size |
risch | \(x^{4}+4 x^{3}+3 x^{2}+\left (x^{3}+4 x^{2}+3 x \right ) {\mathrm e}^{\frac {2 x^{2} \left (x -1\right )}{\ln \left (3 x \right )}}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {{\ln \left (3\,x\right )}^2\,\left (4\,x^3+12\,x^2+6\,x\right )+{\mathrm {e}}^{-\frac {2\,\left (x^2-x^3\right )}{\ln \left (3\,x\right )}}\,\left ({\ln \left (3\,x\right )}^2\,\left (3\,x^2+8\,x+3\right )+6\,x^2+2\,x^3-6\,x^4-2\,x^5+\ln \left (3\,x\right )\,\left (6\,x^5+20\,x^4+2\,x^3-12\,x^2\right )\right )}{{\ln \left (3\,x\right )}^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 15.85, size = 41, normalized size = 1.28 \begin {gather*} x^{4} + 4 x^{3} + 3 x^{2} + \left (x^{3} + 4 x^{2} + 3 x\right ) e^{\frac {2 \left (x^{3} - x^{2}\right )}{\log {\left (3 x \right )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________