Optimal. Leaf size=26 \[ \frac {\log \left (\frac {5}{-5+\frac {x}{3}}\right )}{x^2 \left (13+x-x^2\right )} \]
________________________________________________________________________________________
Rubi [B] time = 1.76, antiderivative size = 613, normalized size of antiderivative = 23.58, number of steps used = 76, number of rules used = 18, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.265, Rules used = {6741, 6742, 740, 800, 632, 31, 893, 638, 618, 206, 2418, 2395, 44, 36, 29, 2394, 2393, 2391} \begin {gather*} -\frac {209-365 x}{135733 \left (-x^2+x+13\right )}+\frac {12 x+365}{135733 \left (-x^2+x+13\right )}-\frac {29 x+12}{10441 \left (-x^2+x+13\right )}+\frac {\log \left (-\frac {15}{15-x}\right )}{13 x^2}+\frac {\left (77963+34959 \sqrt {53}\right ) \log \left (-2 x-\sqrt {53}+1\right )}{347612213}-\frac {\left (2809+9889 \sqrt {53}\right ) \log \left (-2 x-\sqrt {53}+1\right )}{218028962}-\frac {\left (68264+1457 \sqrt {53}\right ) \log \left (-2 x-\sqrt {53}+1\right )}{347612213}+\frac {27 \left (1-\sqrt {53}\right ) \log \left (-2 x-\sqrt {53}+1\right )}{8957 \left (29+\sqrt {53}\right )}-\frac {80 \log \left (-2 x-\sqrt {53}+1\right )}{8957 \left (29+\sqrt {53}\right )}+\frac {27 \left (1+\sqrt {53}\right ) \log \left (-2 x+\sqrt {53}+1\right )}{8957 \left (29-\sqrt {53}\right )}-\frac {80 \log \left (-2 x+\sqrt {53}+1\right )}{8957 \left (29-\sqrt {53}\right )}-\frac {\left (68264-1457 \sqrt {53}\right ) \log \left (-2 x+\sqrt {53}+1\right )}{347612213}-\frac {\left (2809-9889 \sqrt {53}\right ) \log \left (-2 x+\sqrt {53}+1\right )}{218028962}+\frac {\left (77963-34959 \sqrt {53}\right ) \log \left (-2 x+\sqrt {53}+1\right )}{347612213}+\frac {27 \left (1-\sqrt {53}\right ) \log \left (-\frac {15}{15-x}\right )}{8957 \left (-2 x-\sqrt {53}+1\right )}-\frac {80 \log \left (-\frac {15}{15-x}\right )}{8957 \left (-2 x-\sqrt {53}+1\right )}+\frac {27 \left (1+\sqrt {53}\right ) \log \left (-\frac {15}{15-x}\right )}{8957 \left (-2 x+\sqrt {53}+1\right )}-\frac {80 \log \left (-\frac {15}{15-x}\right )}{8957 \left (-2 x+\sqrt {53}+1\right )}-\frac {\log \left (-\frac {15}{15-x}\right )}{169 x}-\frac {27 \left (1-\sqrt {53}\right ) \log (15-x)}{8957 \left (29+\sqrt {53}\right )}+\frac {80 \log (15-x)}{8957 \left (29+\sqrt {53}\right )}-\frac {27 \left (1+\sqrt {53}\right ) \log (15-x)}{8957 \left (29-\sqrt {53}\right )}+\frac {80 \log (15-x)}{8957 \left (29-\sqrt {53}\right )}-\frac {\log (15-x)}{33293}-\frac {58 \tanh ^{-1}\left (\frac {1-2 x}{\sqrt {53}}\right )}{10441 \sqrt {53}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 44
Rule 206
Rule 618
Rule 632
Rule 638
Rule 740
Rule 800
Rule 893
Rule 2391
Rule 2393
Rule 2394
Rule 2395
Rule 2418
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {13 x+x^2-x^3-\left (390+19 x-63 x^2+4 x^3\right ) \log \left (\frac {15}{-15+x}\right )}{(15-x) x^3 \left (13+x-x^2\right )^2} \, dx\\ &=\int \left (\frac {1}{(-15+x) \left (-13-x+x^2\right )^2}-\frac {13}{(-15+x) x^2 \left (-13-x+x^2\right )^2}-\frac {1}{(-15+x) x \left (-13-x+x^2\right )^2}+\frac {\left (-26-3 x+4 x^2\right ) \log \left (\frac {15}{-15+x}\right )}{x^3 \left (-13-x+x^2\right )^2}\right ) \, dx\\ &=-\left (13 \int \frac {1}{(-15+x) x^2 \left (-13-x+x^2\right )^2} \, dx\right )+\int \frac {1}{(-15+x) \left (-13-x+x^2\right )^2} \, dx-\int \frac {1}{(-15+x) x \left (-13-x+x^2\right )^2} \, dx+\int \frac {\left (-26-3 x+4 x^2\right ) \log \left (\frac {15}{-15+x}\right )}{x^3 \left (-13-x+x^2\right )^2} \, dx\\ &=-\frac {12+29 x}{10441 \left (13+x-x^2\right )}-\frac {\int \frac {382-29 x}{(-15+x) \left (-13-x+x^2\right )} \, dx}{10441}-13 \int \left (\frac {1}{8732025 (-15+x)}-\frac {1}{2535 x^2}+\frac {17}{494325 x}+\frac {-183+x}{33293 \left (-13-x+x^2\right )^2}-\frac {2 (-18215+1471 x)}{85263373 \left (-13-x+x^2\right )}\right ) \, dx-\int \left (\frac {1}{582135 (-15+x)}-\frac {1}{2535 x}+\frac {1-14 x}{2561 \left (-13-x+x^2\right )^2}+\frac {-2745+2576 x}{6558721 \left (-13-x+x^2\right )}\right ) \, dx+\int \left (-\frac {2 \log \left (\frac {15}{-15+x}\right )}{13 x^3}+\frac {\log \left (\frac {15}{-15+x}\right )}{169 x^2}+\frac {(-40+27 x) \log \left (\frac {15}{-15+x}\right )}{169 \left (-13-x+x^2\right )^2}-\frac {\log \left (\frac {15}{-15+x}\right )}{169 \left (-13-x+x^2\right )}\right ) \, dx\\ &=-\frac {1}{195 x}-\frac {12+29 x}{10441 \left (13+x-x^2\right )}-\frac {28 \log (15-x)}{8732025}-\frac {2 \log (x)}{38025}-\frac {\int \frac {-2745+2576 x}{-13-x+x^2} \, dx}{6558721}+\frac {2 \int \frac {-18215+1471 x}{-13-x+x^2} \, dx}{6558721}-\frac {\int \left (-\frac {53}{197 (-15+x)}+\frac {-4971+53 x}{197 \left (-13-x+x^2\right )}\right ) \, dx}{10441}-\frac {\int \frac {1-14 x}{\left (-13-x+x^2\right )^2} \, dx}{2561}-\frac {\int \frac {-183+x}{\left (-13-x+x^2\right )^2} \, dx}{2561}+\frac {1}{169} \int \frac {\log \left (\frac {15}{-15+x}\right )}{x^2} \, dx+\frac {1}{169} \int \frac {(-40+27 x) \log \left (\frac {15}{-15+x}\right )}{\left (-13-x+x^2\right )^2} \, dx-\frac {1}{169} \int \frac {\log \left (\frac {15}{-15+x}\right )}{-13-x+x^2} \, dx-\frac {2}{13} \int \frac {\log \left (\frac {15}{-15+x}\right )}{x^3} \, dx\\ &=-\frac {1}{195 x}-\frac {209-365 x}{135733 \left (13+x-x^2\right )}+\frac {365+12 x}{135733 \left (13+x-x^2\right )}-\frac {12+29 x}{10441 \left (13+x-x^2\right )}+\frac {\log \left (-\frac {15}{15-x}\right )}{13 x^2}-\frac {\log \left (-\frac {15}{15-x}\right )}{169 x}+\frac {\log (15-x)}{44325}-\frac {2 \log (x)}{38025}-\frac {\int \frac {-4971+53 x}{-13-x+x^2} \, dx}{2056877}-\frac {12 \int \frac {1}{-13-x+x^2} \, dx}{135733}-\frac {365 \int \frac {1}{-13-x+x^2} \, dx}{135733}-\frac {1}{169} \int \frac {1}{(-15+x) x} \, dx-\frac {1}{169} \int \left (-\frac {2 \log \left (\frac {15}{-15+x}\right )}{\sqrt {53} \left (1+\sqrt {53}-2 x\right )}-\frac {2 \log \left (\frac {15}{-15+x}\right )}{\sqrt {53} \left (-1+\sqrt {53}+2 x\right )}\right ) \, dx+\frac {1}{169} \int \left (-\frac {40 \log \left (\frac {15}{-15+x}\right )}{\left (-13-x+x^2\right )^2}+\frac {27 x \log \left (\frac {15}{-15+x}\right )}{\left (-13-x+x^2\right )^2}\right ) \, dx+\frac {1}{13} \int \frac {1}{(-15+x) x^2} \, dx+\frac {\left (77963-34959 \sqrt {53}\right ) \int \frac {1}{-\frac {1}{2}-\frac {\sqrt {53}}{2}+x} \, dx}{347612213}-\frac {\left (68264-1457 \sqrt {53}\right ) \int \frac {1}{-\frac {1}{2}-\frac {\sqrt {53}}{2}+x} \, dx}{347612213}-\frac {\left (68264+1457 \sqrt {53}\right ) \int \frac {1}{-\frac {1}{2}+\frac {\sqrt {53}}{2}+x} \, dx}{347612213}+\frac {\left (77963+34959 \sqrt {53}\right ) \int \frac {1}{-\frac {1}{2}+\frac {\sqrt {53}}{2}+x} \, dx}{347612213}\\ &=-\frac {1}{195 x}-\frac {209-365 x}{135733 \left (13+x-x^2\right )}+\frac {365+12 x}{135733 \left (13+x-x^2\right )}-\frac {12+29 x}{10441 \left (13+x-x^2\right )}-\frac {\left (68264+1457 \sqrt {53}\right ) \log \left (1-\sqrt {53}-2 x\right )}{347612213}+\frac {\left (77963+34959 \sqrt {53}\right ) \log \left (1-\sqrt {53}-2 x\right )}{347612213}+\frac {\left (77963-34959 \sqrt {53}\right ) \log \left (1+\sqrt {53}-2 x\right )}{347612213}-\frac {\left (68264-1457 \sqrt {53}\right ) \log \left (1+\sqrt {53}-2 x\right )}{347612213}+\frac {\log \left (-\frac {15}{15-x}\right )}{13 x^2}-\frac {\log \left (-\frac {15}{15-x}\right )}{169 x}+\frac {\log (15-x)}{44325}-\frac {2 \log (x)}{38025}+\frac {24 \operatorname {Subst}\left (\int \frac {1}{53-x^2} \, dx,x,-1+2 x\right )}{135733}-\frac {\int \frac {1}{-15+x} \, dx}{2535}+\frac {\int \frac {1}{x} \, dx}{2535}+\frac {730 \operatorname {Subst}\left (\int \frac {1}{53-x^2} \, dx,x,-1+2 x\right )}{135733}+\frac {1}{13} \int \left (\frac {1}{225 (-15+x)}-\frac {1}{15 x^2}-\frac {1}{225 x}\right ) \, dx+\frac {27}{169} \int \frac {x \log \left (\frac {15}{-15+x}\right )}{\left (-13-x+x^2\right )^2} \, dx-\frac {40}{169} \int \frac {\log \left (\frac {15}{-15+x}\right )}{\left (-13-x+x^2\right )^2} \, dx+\frac {2 \int \frac {\log \left (\frac {15}{-15+x}\right )}{1+\sqrt {53}-2 x} \, dx}{169 \sqrt {53}}+\frac {2 \int \frac {\log \left (\frac {15}{-15+x}\right )}{-1+\sqrt {53}+2 x} \, dx}{169 \sqrt {53}}-\frac {\left (2809-9889 \sqrt {53}\right ) \int \frac {1}{-\frac {1}{2}-\frac {\sqrt {53}}{2}+x} \, dx}{218028962}-\frac {\left (2809+9889 \sqrt {53}\right ) \int \frac {1}{-\frac {1}{2}+\frac {\sqrt {53}}{2}+x} \, dx}{218028962}\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 23, normalized size = 0.88 \begin {gather*} -\frac {\log \left (\frac {15}{-15+x}\right )}{x^2 \left (-13-x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 26, normalized size = 1.00 \begin {gather*} -\frac {\log \left (\frac {15}{x - 15}\right )}{x^{4} - x^{3} - 13 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.21, size = 80, normalized size = 3.08 \begin {gather*} -\frac {1}{7490925} \, {\left (\frac {197 \, {\left (\frac {165}{x - 15} - 2\right )}}{\frac {30}{x - 15} + \frac {225}{{\left (x - 15\right )}^{2}} + 1} - \frac {225 \, {\left (\frac {168}{x - 15} - 1\right )}}{\frac {29}{x - 15} + \frac {197}{{\left (x - 15\right )}^{2}} + 1}\right )} \log \left (\frac {15}{x - 15}\right ) - \frac {1}{44325} \, \log \left (\frac {15}{x - 15}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 24, normalized size = 0.92
method | result | size |
norman | \(-\frac {\ln \left (\frac {15}{x -15}\right )}{x^{2} \left (x^{2}-x -13\right )}\) | \(24\) |
risch | \(-\frac {\ln \left (\frac {15}{x -15}\right )}{x^{2} \left (x^{2}-x -13\right )}\) | \(24\) |
derivativedivides | \(\frac {11 \ln \left (\frac {15}{x -15}\right )}{2535 \left (x -15\right ) \left (1+\frac {15}{x -15}\right )}-\frac {168 \sqrt {53}\, \ln \left (\frac {15}{x -15}\right ) \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )}{1764529}+\frac {168 \sqrt {53}\, \ln \left (\frac {15}{x -15}\right ) \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )}{1764529}-\frac {\ln \left (\frac {15}{x -15}\right ) \left (\frac {15}{x -15}+2\right )}{195 \left (x -15\right ) \left (1+\frac {15}{x -15}\right )^{2}}+\frac {\ln \left (\frac {15}{x -15}\right ) \left (\frac {7446600 \sqrt {53}\, \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )}{\left (x -15\right )^{2}}-\frac {7446600 \sqrt {53}\, \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )}{\left (x -15\right )^{2}}+\frac {1096200 \sqrt {53}\, \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )}{x -15}-\frac {1096200 \sqrt {53}\, \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )}{x -15}+37800 \sqrt {53}\, \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )-37800 \sqrt {53}\, \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )+\frac {2349225}{\left (x -15\right )^{2}}+\frac {2349225}{x -15}\right )}{\frac {78212747925}{\left (x -15\right )^{2}}+\frac {11513551725}{x -15}+397019025}\) | \(374\) |
default | \(\frac {11 \ln \left (\frac {15}{x -15}\right )}{2535 \left (x -15\right ) \left (1+\frac {15}{x -15}\right )}-\frac {168 \sqrt {53}\, \ln \left (\frac {15}{x -15}\right ) \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )}{1764529}+\frac {168 \sqrt {53}\, \ln \left (\frac {15}{x -15}\right ) \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )}{1764529}-\frac {\ln \left (\frac {15}{x -15}\right ) \left (\frac {15}{x -15}+2\right )}{195 \left (x -15\right ) \left (1+\frac {15}{x -15}\right )^{2}}+\frac {\ln \left (\frac {15}{x -15}\right ) \left (\frac {7446600 \sqrt {53}\, \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )}{\left (x -15\right )^{2}}-\frac {7446600 \sqrt {53}\, \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )}{\left (x -15\right )^{2}}+\frac {1096200 \sqrt {53}\, \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )}{x -15}-\frac {1096200 \sqrt {53}\, \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )}{x -15}+37800 \sqrt {53}\, \ln \left (\frac {-435+15 \sqrt {53}-\frac {5910}{x -15}}{-435+15 \sqrt {53}}\right )-37800 \sqrt {53}\, \ln \left (\frac {435+15 \sqrt {53}+\frac {5910}{x -15}}{435+15 \sqrt {53}}\right )+\frac {2349225}{\left (x -15\right )^{2}}+\frac {2349225}{x -15}\right )}{\frac {78212747925}{\left (x -15\right )^{2}}+\frac {11513551725}{x -15}+397019025}\) | \(374\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 29, normalized size = 1.12 \begin {gather*} -\frac {\log \relax (5) + \log \relax (3) - \log \left (x - 15\right )}{x^{4} - x^{3} - 13 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.45, size = 26, normalized size = 1.00 \begin {gather*} \frac {\ln \left (15\right )+\ln \left (\frac {1}{x-15}\right )}{-x^4+x^3+13\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 19, normalized size = 0.73 \begin {gather*} - \frac {\log {\left (\frac {15}{x - 15} \right )}}{x^{4} - x^{3} - 13 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________