Optimal. Leaf size=16 \[ e^x-\frac {216 e^x x^4}{\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {216 e^x x^3+e^x \left (-864 x^3-216 x^4\right ) \log (x)+e^x \log ^2(x)}{\log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (216 x^3-216 x^3 (4+x) \log (x)+\log ^2(x)\right )}{\log ^2(x)} \, dx\\ &=\int \left (e^x+\frac {216 e^x x^3}{\log ^2(x)}-\frac {216 e^x x^3 (4+x)}{\log (x)}\right ) \, dx\\ &=216 \int \frac {e^x x^3}{\log ^2(x)} \, dx-216 \int \frac {e^x x^3 (4+x)}{\log (x)} \, dx+\int e^x \, dx\\ &=e^x-216 \int \left (\frac {4 e^x x^3}{\log (x)}+\frac {e^x x^4}{\log (x)}\right ) \, dx+216 \int \frac {e^x x^3}{\log ^2(x)} \, dx\\ &=e^x+216 \int \frac {e^x x^3}{\log ^2(x)} \, dx-216 \int \frac {e^x x^4}{\log (x)} \, dx-864 \int \frac {e^x x^3}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 16, normalized size = 1.00 \begin {gather*} e^x-\frac {216 e^x x^4}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.89, size = 20, normalized size = 1.25 \begin {gather*} -\frac {216 \, x^{4} e^{x} - e^{x} \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 20, normalized size = 1.25 \begin {gather*} -\frac {216 \, x^{4} e^{x} - e^{x} \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 15, normalized size = 0.94
method | result | size |
risch | \({\mathrm e}^{x}-\frac {216 \,{\mathrm e}^{x} x^{4}}{\ln \relax (x )}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 14, normalized size = 0.88 \begin {gather*} -\frac {216 \, x^{4} e^{x}}{\log \relax (x)} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.22, size = 14, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^x-\frac {216\,x^4\,{\mathrm {e}}^x}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 14, normalized size = 0.88 \begin {gather*} \frac {\left (- 216 x^{4} + \log {\relax (x )}\right ) e^{x}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________