Optimal. Leaf size=31 \[ 5^{\left (2-e^{2 x}\right ) x^x} x^{\left (2-e^{2 x}\right ) x^x} \]
________________________________________________________________________________________
Rubi [F] time = 15.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5^{\left (2-e^{2 x}\right ) x^x} \left (2-e^{2 x}\right ) x^{x+\left (2-e^{2 x}\right ) x^x} \left (-2+e^{2 x}+\left (-2 x+3 e^{2 x} x+\left (-2 x+e^{2 x} x\right ) \log (x)\right ) \log (5 x)\right )}{-2 x+e^{2 x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \left (2-e^{2 x}-x \left (-2+3 e^{2 x}+\left (-2+e^{2 x}\right ) \log (x)\right ) \log (5 x)\right ) \, dx\\ &=\int \left (2\ 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x}-5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x}-5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \left (-2+3 e^{2 x}-2 \log (x)+e^{2 x} \log (x)\right ) \log (5 x)\right ) \, dx\\ &=2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \left (-2+3 e^{2 x}-2 \log (x)+e^{2 x} \log (x)\right ) \log (5 x) \, dx\\ &=2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int \left (-2 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} (1+\log (x)) \log (5 x)+5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} (3+\log (x)) \log (5 x)\right ) \, dx\\ &=2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx+2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} (1+\log (x)) \log (5 x) \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} (3+\log (x)) \log (5 x) \, dx\\ &=2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx+2 \int \left (5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (5 x)+5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (x) \log (5 x)\right ) \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int \left (3\ 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (5 x)+5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (x) \log (5 x)\right ) \, dx\\ &=2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx+2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (5 x) \, dx+2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (x) \log (5 x) \, dx-3 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (5 x) \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \log (x) \log (5 x) \, dx\\ &=2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-2 \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx-2 \int \frac {\log (x) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx-2 \int \frac {\log (5 x) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx+3 \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx+(2 \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx-(3 \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx-(\log (x) \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx+(2 \log (x) \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx+\int \frac {\log (x) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx+\int \frac {\log (5 x) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx\\ &=2 \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-2 \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx+2 \left (2 \int \frac {\int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx}{x} \, dx\right )+3 \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx+\log (x) \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx-(2 \log (x)) \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx+\log (5 x) \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx+(2 \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx-(2 \log (5 x)) \int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx-(3 \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx-(\log (x) \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx+(2 \log (x) \log (5 x)) \int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx-\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{-1+x-\left (-2+e^{2 x}\right ) x^x} \, dx-2 \int \frac {\int \frac {\int 5^{-\left (\left (-2+e^{2 x}\right ) x^x\right )} e^{2 x} x^{x-\left (-2+e^{2 x}\right ) x^x} \, dx}{x} \, dx}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 4.22, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5^{\left (2-e^{2 x}\right ) x^x} \left (2-e^{2 x}\right ) x^{x+\left (2-e^{2 x}\right ) x^x} \left (-2+e^{2 x}+\left (-2 x+3 e^{2 x} x+\left (-2 x+e^{2 x} x\right ) \log (x)\right ) \log (5 x)\right )}{-2 x+e^{2 x} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 22, normalized size = 0.71 \begin {gather*} e^{\left ({\left (\log \relax (5) + \log \relax (x)\right )} e^{\left (x \log \relax (x) + \log \left (-e^{\left (2 \, x\right )} + 2\right )\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left ({\left (3 \, x e^{\left (2 \, x\right )} + {\left (x e^{\left (2 \, x\right )} - 2 \, x\right )} \log \relax (x) - 2 \, x\right )} \log \left (5 \, x\right ) + e^{\left (2 \, x\right )} - 2\right )} \left (5 \, x\right )^{e^{\left (x \log \relax (x) + \log \left (-e^{\left (2 \, x\right )} + 2\right )\right )}} e^{\left (x \log \relax (x) + \log \left (-e^{\left (2 \, x\right )} + 2\right )\right )}}{x e^{\left (2 \, x\right )} - 2 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 18, normalized size = 0.58
method | result | size |
risch | \({\mathrm e}^{-\left (\ln \relax (5)+\ln \relax (x )\right ) \left (-2+{\mathrm e}^{2 x}\right ) x^{x}}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 42, normalized size = 1.35 \begin {gather*} e^{\left (2 \, x^{x} \log \relax (5) - e^{\left (x \log \relax (x) + 2 \, x\right )} \log \relax (5) + 2 \, x^{x} \log \relax (x) - e^{\left (x \log \relax (x) + 2 \, x\right )} \log \relax (x)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.46, size = 19, normalized size = 0.61 \begin {gather*} {\left (5\,x\right )}^{2\,x^x-x^x\,{\mathrm {e}}^{2\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 22.03, size = 20, normalized size = 0.65 \begin {gather*} e^{\left (2 - e^{2 x}\right ) \left (\log {\relax (x )} + \log {\relax (5 )}\right ) e^{x \log {\relax (x )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________