Optimal. Leaf size=23 \[ \frac {4}{x+\frac {1}{5} x (-5+4 (x+(3+x) \log (x)))} \]
________________________________________________________________________________________
Rubi [F] time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15-15 x+(-15-10 x) \log (x)}{x^4+\left (6 x^3+2 x^4\right ) \log (x)+\left (9 x^2+6 x^3+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 (-3 (1+x)-(3+2 x) \log (x))}{x^2 (x+(3+x) \log (x))^2} \, dx\\ &=5 \int \frac {-3 (1+x)-(3+2 x) \log (x)}{x^2 (x+(3+x) \log (x))^2} \, dx\\ &=5 \int \left (\frac {-9-9 x-x^2}{x^2 (3+x) (x+3 \log (x)+x \log (x))^2}+\frac {-3-2 x}{x^2 (3+x) (x+3 \log (x)+x \log (x))}\right ) \, dx\\ &=5 \int \frac {-9-9 x-x^2}{x^2 (3+x) (x+3 \log (x)+x \log (x))^2} \, dx+5 \int \frac {-3-2 x}{x^2 (3+x) (x+3 \log (x)+x \log (x))} \, dx\\ &=5 \int \left (-\frac {3}{x^2 (x+3 \log (x)+x \log (x))^2}-\frac {2}{x (x+3 \log (x)+x \log (x))^2}+\frac {1}{(3+x) (x+3 \log (x)+x \log (x))^2}\right ) \, dx+5 \int \left (-\frac {1}{x^2 (x+3 \log (x)+x \log (x))}-\frac {1}{3 x (x+3 \log (x)+x \log (x))}+\frac {1}{3 (3+x) (x+3 \log (x)+x \log (x))}\right ) \, dx\\ &=-\left (\frac {5}{3} \int \frac {1}{x (x+3 \log (x)+x \log (x))} \, dx\right )+\frac {5}{3} \int \frac {1}{(3+x) (x+3 \log (x)+x \log (x))} \, dx+5 \int \frac {1}{(3+x) (x+3 \log (x)+x \log (x))^2} \, dx-5 \int \frac {1}{x^2 (x+3 \log (x)+x \log (x))} \, dx-10 \int \frac {1}{x (x+3 \log (x)+x \log (x))^2} \, dx-15 \int \frac {1}{x^2 (x+3 \log (x)+x \log (x))^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 17, normalized size = 0.74 \begin {gather*} \frac {5}{x (x+3 \log (x)+x \log (x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 18, normalized size = 0.78 \begin {gather*} \frac {5}{x^{2} + {\left (x^{2} + 3 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 19, normalized size = 0.83 \begin {gather*} \frac {5}{x^{2} \log \relax (x) + x^{2} + 3 \, x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.78
method | result | size |
norman | \(\frac {5}{x \left (x \ln \relax (x )+3 \ln \relax (x )+x \right )}\) | \(18\) |
risch | \(\frac {5}{x \left (x \ln \relax (x )+3 \ln \relax (x )+x \right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.78 \begin {gather*} \frac {5}{x^{2} + {\left (x^{2} + 3 \, x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.50, size = 34, normalized size = 1.48 \begin {gather*} \frac {5\,\left (x^2+9\,x+9\right )}{\left (x+\ln \relax (x)\,\left (x+3\right )\right )\,\left (x^3+9\,x^2+9\,x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 14, normalized size = 0.61 \begin {gather*} \frac {5}{x^{2} + \left (x^{2} + 3 x\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________