Optimal. Leaf size=23 \[ \frac {18 (5-x) x}{\left (2-\frac {e^{5/4}}{\log (x)}\right )^4} \]
________________________________________________________________________________________
Rubi [C] time = 2.10, antiderivative size = 909, normalized size of antiderivative = 39.52, number of steps used = 74, number of rules used = 9, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.092, Rules used = {6688, 12, 6742, 2320, 2330, 2299, 2178, 2309, 2297} \begin {gather*} -\frac {9}{32} (5-2 x)^2-\frac {15}{256} e^{\frac {15}{4}+\frac {e^{5/4}}{2}} \left (24-e^{5/4}\right ) \text {Ei}\left (\frac {1}{2} \left (2 \log (x)-e^{5/4}\right )\right )-\frac {45}{32} e^{\frac {1}{2} \left (5+e^{5/4}\right )} \left (6-e^{5/4}\right ) \text {Ei}\left (\frac {1}{2} \left (2 \log (x)-e^{5/4}\right )\right )-\frac {45}{16} e^{\frac {5}{4}+\frac {e^{5/4}}{2}} \left (4-3 e^{5/4}\right ) \text {Ei}\left (\frac {1}{2} \left (2 \log (x)-e^{5/4}\right )\right )-\frac {15}{256} e^{5+\frac {e^{5/4}}{2}} \text {Ei}\left (\frac {1}{2} \left (2 \log (x)-e^{5/4}\right )\right )+\frac {45}{4} e^{\frac {5}{4}+\frac {e^{5/4}}{2}} \text {Ei}\left (\frac {1}{2} \left (2 \log (x)-e^{5/4}\right )\right )+\frac {3}{16} e^{\frac {15}{4}+e^{5/4}} \left (12-e^{5/4}\right ) \text {Ei}\left (2 \log (x)-e^{5/4}\right )+\frac {9}{4} e^{\frac {5}{2}+e^{5/4}} \left (3-e^{5/4}\right ) \text {Ei}\left (2 \log (x)-e^{5/4}\right )+\frac {9}{4} e^{\frac {5}{4}+e^{5/4}} \left (2-3 e^{5/4}\right ) \text {Ei}\left (2 \log (x)-e^{5/4}\right )+\frac {3}{16} e^{5+e^{5/4}} \text {Ei}\left (2 \log (x)-e^{5/4}\right )-\frac {9}{2} e^{\frac {5}{4}+e^{5/4}} \text {Ei}\left (2 \log (x)-e^{5/4}\right )-\frac {3 e^5 (5-x) x}{16 \left (e^{5/4}-2 \log (x)\right )}+\frac {45 e^{15/4} \left (24-e^{5/4}\right ) x}{128 \left (e^{5/4}-2 \log (x)\right )}+\frac {45 e^{5/2} \left (6-e^{5/4}\right ) x}{16 \left (e^{5/4}-2 \log (x)\right )}+\frac {105 e^5 x}{128 \left (e^{5/4}-2 \log (x)\right )}-\frac {9 e^{5/4} x \left (5 \left (4-3 e^{5/4}\right )-2 \left (2-3 e^{5/4}\right ) x\right )}{8 \left (e^{5/4}-2 \log (x)\right )}-\frac {9 e^{5/2} x \left (5 \left (6-e^{5/4}\right )-2 \left (3-e^{5/4}\right ) x\right )}{8 \left (e^{5/4}-2 \log (x)\right )}-\frac {3 e^{15/4} x \left (5 \left (24-e^{5/4}\right )-2 \left (12-e^{5/4}\right ) x\right )}{32 \left (e^{5/4}-2 \log (x)\right )}+\frac {3 e^5 (5-x) x}{16 \left (e^{5/4}-2 \log (x)\right )^2}-\frac {15 e^{15/4} \left (24-e^{5/4}\right ) x}{64 \left (e^{5/4}-2 \log (x)\right )^2}-\frac {45 e^5 x}{64 \left (e^{5/4}-2 \log (x)\right )^2}+\frac {9 e^{5/2} x \left (5 \left (6-e^{5/4}\right )-2 \left (3-e^{5/4}\right ) x\right )}{8 \left (e^{5/4}-2 \log (x)\right )^2}+\frac {3 e^{15/4} x \left (5 \left (24-e^{5/4}\right )-2 \left (12-e^{5/4}\right ) x\right )}{32 \left (e^{5/4}-2 \log (x)\right )^2}-\frac {3 e^5 (5-x) x}{8 \left (e^{5/4}-2 \log (x)\right )^3}+\frac {15 e^5 x}{16 \left (e^{5/4}-2 \log (x)\right )^3}-\frac {3 e^{15/4} x \left (5 \left (24-e^{5/4}\right )-2 \left (12-e^{5/4}\right ) x\right )}{16 \left (e^{5/4}-2 \log (x)\right )^3}+\frac {9 e^5 (5-x) x}{8 \left (e^{5/4}-2 \log (x)\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2297
Rule 2299
Rule 2309
Rule 2320
Rule 2330
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18 \log ^3(x) \left (-4 e^{5/4} (-5+x)-e^{5/4} (-5+2 x) \log (x)-(10-4 x) \log ^2(x)\right )}{\left (e^{5/4}-2 \log (x)\right )^5} \, dx\\ &=18 \int \frac {\log ^3(x) \left (-4 e^{5/4} (-5+x)-e^{5/4} (-5+2 x) \log (x)-(10-4 x) \log ^2(x)\right )}{\left (e^{5/4}-2 \log (x)\right )^5} \, dx\\ &=18 \int \left (\frac {1}{16} (5-2 x)-\frac {e^5 (-5+x)}{2 \left (e^{5/4}-2 \log (x)\right )^5}+\frac {-5 e^{15/4} \left (24-e^{5/4}\right )+2 e^{15/4} \left (12-e^{5/4}\right ) x}{16 \left (e^{5/4}-2 \log (x)\right )^4}+\frac {e^{5/2} \left (5 \left (6-e^{5/4}\right )-2 \left (3-e^{5/4}\right ) x\right )}{4 \left (e^{5/4}-2 \log (x)\right )^3}+\frac {-5 e^{5/4} \left (4-3 e^{5/4}\right )+2 e^{5/4} \left (2-3 e^{5/4}\right ) x}{8 \left (e^{5/4}-2 \log (x)\right )^2}+\frac {e^{5/4} (-5+2 x)}{4 \left (e^{5/4}-2 \log (x)\right )}\right ) \, dx\\ &=-\frac {9}{32} (5-2 x)^2+\frac {9}{8} \int \frac {-5 e^{15/4} \left (24-e^{5/4}\right )+2 e^{15/4} \left (12-e^{5/4}\right ) x}{\left (e^{5/4}-2 \log (x)\right )^4} \, dx+\frac {9}{4} \int \frac {-5 e^{5/4} \left (4-3 e^{5/4}\right )+2 e^{5/4} \left (2-3 e^{5/4}\right ) x}{\left (e^{5/4}-2 \log (x)\right )^2} \, dx+\frac {1}{2} \left (9 e^{5/4}\right ) \int \frac {-5+2 x}{e^{5/4}-2 \log (x)} \, dx+\frac {1}{2} \left (9 e^{5/2}\right ) \int \frac {5 \left (6-e^{5/4}\right )-2 \left (3-e^{5/4}\right ) x}{\left (e^{5/4}-2 \log (x)\right )^3} \, dx-\left (9 e^5\right ) \int \frac {-5+x}{\left (e^{5/4}-2 \log (x)\right )^5} \, dx\\ &=-\frac {9}{32} (5-2 x)^2+\frac {9 e^5 (5-x) x}{8 \left (e^{5/4}-2 \log (x)\right )^4}-\frac {3 e^{15/4} x \left (5 \left (24-e^{5/4}\right )-2 \left (12-e^{5/4}\right ) x\right )}{16 \left (e^{5/4}-2 \log (x)\right )^3}+\frac {9 e^{5/2} x \left (5 \left (6-e^{5/4}\right )-2 \left (3-e^{5/4}\right ) x\right )}{8 \left (e^{5/4}-2 \log (x)\right )^2}-\frac {9 e^{5/4} x \left (5 \left (4-3 e^{5/4}\right )-2 \left (2-3 e^{5/4}\right ) x\right )}{8 \left (e^{5/4}-2 \log (x)\right )}-\frac {3}{8} \int \frac {-5 e^{15/4} \left (24-e^{5/4}\right )+2 e^{15/4} \left (12-e^{5/4}\right ) x}{\left (e^{5/4}-2 \log (x)\right )^3} \, dx-\frac {9}{4} \int \frac {-5 e^{5/4} \left (4-3 e^{5/4}\right )+2 e^{5/4} \left (2-3 e^{5/4}\right ) x}{e^{5/4}-2 \log (x)} \, dx+\frac {1}{2} \left (9 e^{5/4}\right ) \int \left (-\frac {5}{e^{5/4}-2 \log (x)}+\frac {2 x}{e^{5/4}-2 \log (x)}\right ) \, dx-\frac {1}{4} \left (9 e^{5/2}\right ) \int \frac {5 \left (6-e^{5/4}\right )-2 \left (3-e^{5/4}\right ) x}{\left (e^{5/4}-2 \log (x)\right )^2} \, dx+\frac {1}{4} \left (9 e^5\right ) \int \frac {-5+x}{\left (e^{5/4}-2 \log (x)\right )^4} \, dx+\frac {1}{8} \left (45 e^5\right ) \int \frac {1}{\left (e^{5/4}-2 \log (x)\right )^4} \, dx-\frac {1}{8} \left (45 e^{5/4} \left (4-3 e^{5/4}\right )\right ) \int \frac {1}{e^{5/4}-2 \log (x)} \, dx+\frac {1}{8} \left (45 e^{5/2} \left (6-e^{5/4}\right )\right ) \int \frac {1}{\left (e^{5/4}-2 \log (x)\right )^2} \, dx-\frac {1}{16} \left (15 e^{15/4} \left (24-e^{5/4}\right )\right ) \int \frac {1}{\left (e^{5/4}-2 \log (x)\right )^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.42, size = 22, normalized size = 0.96 \begin {gather*} -\frac {18 (-5+x) x \log ^4(x)}{\left (e^{5/4}-2 \log (x)\right )^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 48, normalized size = 2.09 \begin {gather*} \frac {18 \, {\left (x^{2} - 5 \, x\right )} \log \relax (x)^{4}}{32 \, e^{\frac {5}{4}} \log \relax (x)^{3} - 16 \, \log \relax (x)^{4} - 24 \, e^{\frac {5}{2}} \log \relax (x)^{2} + 8 \, e^{\frac {15}{4}} \log \relax (x) - e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.98, size = 87, normalized size = 3.78 \begin {gather*} \frac {18 \, x^{2} \log \relax (x)^{4}}{32 \, e^{\frac {5}{4}} \log \relax (x)^{3} - 16 \, \log \relax (x)^{4} - 24 \, e^{\frac {5}{2}} \log \relax (x)^{2} + 8 \, e^{\frac {15}{4}} \log \relax (x) - e^{5}} - \frac {90 \, x \log \relax (x)^{4}}{32 \, e^{\frac {5}{4}} \log \relax (x)^{3} - 16 \, \log \relax (x)^{4} - 24 \, e^{\frac {5}{2}} \log \relax (x)^{2} + 8 \, e^{\frac {15}{4}} \log \relax (x) - e^{5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 28, normalized size = 1.22
method | result | size |
norman | \(\frac {90 x \ln \relax (x )^{4}-18 x^{2} \ln \relax (x )^{4}}{\left ({\mathrm e}^{\frac {5}{4}}-2 \ln \relax (x )\right )^{4}}\) | \(28\) |
risch | \(-\frac {9 x^{2}}{8}+\frac {45 x}{8}+\frac {9 \,{\mathrm e}^{\frac {5}{4}} x \left (x \,{\mathrm e}^{\frac {15}{4}}-8 \ln \relax (x ) {\mathrm e}^{\frac {5}{2}} x +24 \,{\mathrm e}^{\frac {5}{4}} \ln \relax (x )^{2} x -32 x \ln \relax (x )^{3}-5 \,{\mathrm e}^{\frac {15}{4}}+40 \ln \relax (x ) {\mathrm e}^{\frac {5}{2}}-120 \ln \relax (x )^{2} {\mathrm e}^{\frac {5}{4}}+160 \ln \relax (x )^{3}\right )}{8 \left ({\mathrm e}^{\frac {5}{4}}-2 \ln \relax (x )\right )^{4}}\) | \(76\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.23, size = 738, normalized size = 32.09 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: AttributeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________