Optimal. Leaf size=27 \[ \left (5-e^{2 x}\right )^2-(-4+x)^2-e^{-x} x \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 7, number of rules used = 3, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.094, Rules used = {6742, 2194, 2176} \begin {gather*} -(4-x)^2-10 e^{2 x}+e^{4 x}-e^{-x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{-x}-20 e^{2 x}+4 e^{4 x}-2 (-4+x)+e^{-x} x\right ) \, dx\\ &=-(4-x)^2+4 \int e^{4 x} \, dx-20 \int e^{2 x} \, dx-\int e^{-x} \, dx+\int e^{-x} x \, dx\\ &=e^{-x}-10 e^{2 x}+e^{4 x}-(4-x)^2-e^{-x} x+\int e^{-x} \, dx\\ &=-10 e^{2 x}+e^{4 x}-(4-x)^2-e^{-x} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 29, normalized size = 1.07 \begin {gather*} -10 e^{2 x}+e^{4 x}+8 x-e^{-x} x-x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 30, normalized size = 1.11 \begin {gather*} -{\left ({\left (x^{2} - 8 \, x\right )} e^{x} + x - e^{\left (5 \, x\right )} + 10 \, e^{\left (3 \, x\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 26, normalized size = 0.96 \begin {gather*} -x^{2} - x e^{\left (-x\right )} + 8 \, x + e^{\left (4 \, x\right )} - 10 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 1.00
method | result | size |
default | \(8 x -x \,{\mathrm e}^{-x}-x^{2}-10 \,{\mathrm e}^{2 x}+{\mathrm e}^{4 x}\) | \(27\) |
risch | \(8 x -x \,{\mathrm e}^{-x}-x^{2}-10 \,{\mathrm e}^{2 x}+{\mathrm e}^{4 x}\) | \(27\) |
norman | \(\left ({\mathrm e}^{5 x}-x -10 \,{\mathrm e}^{3 x}+8 \,{\mathrm e}^{x} x -{\mathrm e}^{x} x^{2}\right ) {\mathrm e}^{-x}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 32, normalized size = 1.19 \begin {gather*} -x^{2} - {\left (x + 1\right )} e^{\left (-x\right )} + 8 \, x + e^{\left (4 \, x\right )} - 10 \, e^{\left (2 \, x\right )} + e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 26, normalized size = 0.96 \begin {gather*} 8\,x-10\,{\mathrm {e}}^{2\,x}+{\mathrm {e}}^{4\,x}-x\,{\mathrm {e}}^{-x}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.81 \begin {gather*} - x^{2} + 8 x - x e^{- x} + e^{4 x} - 10 e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________