Optimal. Leaf size=24 \[ x+\frac {-1+x}{x \log (4)}+\log ^4\left (\frac {1}{2} x (5+x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+x+\left (5 x^2+x^3\right ) \log (4)+\left (20 x+8 x^2\right ) \log (4) \log ^3\left (\frac {1}{2} \left (5 x+x^2\right )\right )}{\left (5 x^2+x^3\right ) \log (4)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {5+x+\left (5 x^2+x^3\right ) \log (4)+\left (20 x+8 x^2\right ) \log (4) \log ^3\left (\frac {1}{2} \left (5 x+x^2\right )\right )}{5 x^2+x^3} \, dx}{\log (4)}\\ &=\frac {\int \frac {5+x+\left (5 x^2+x^3\right ) \log (4)+\left (20 x+8 x^2\right ) \log (4) \log ^3\left (\frac {1}{2} \left (5 x+x^2\right )\right )}{x^2 (5+x)} \, dx}{\log (4)}\\ &=\frac {\int \left (\frac {1}{x^2}+\log (4)+\frac {4 (5+2 x) \log (4) \log ^3\left (\frac {1}{2} x (5+x)\right )}{x (5+x)}\right ) \, dx}{\log (4)}\\ &=x-\frac {1}{x \log (4)}+4 \int \frac {(5+2 x) \log ^3\left (\frac {1}{2} x (5+x)\right )}{x (5+x)} \, dx\\ &=x-\frac {1}{x \log (4)}+4 \int \left (\frac {\log ^3\left (\frac {1}{2} x (5+x)\right )}{x}+\frac {\log ^3\left (\frac {1}{2} x (5+x)\right )}{5+x}\right ) \, dx\\ &=x-\frac {1}{x \log (4)}+4 \int \frac {\log ^3\left (\frac {1}{2} x (5+x)\right )}{x} \, dx+4 \int \frac {\log ^3\left (\frac {1}{2} x (5+x)\right )}{5+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 22, normalized size = 0.92 \begin {gather*} x-\frac {1}{x \log (4)}+\log ^4\left (\frac {1}{2} x (5+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.91, size = 35, normalized size = 1.46 \begin {gather*} \frac {2 \, x \log \relax (2) \log \left (\frac {1}{2} \, x^{2} + \frac {5}{2} \, x\right )^{4} + 2 \, x^{2} \log \relax (2) - 1}{2 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {8 \, {\left (2 \, x^{2} + 5 \, x\right )} \log \relax (2) \log \left (\frac {1}{2} \, x^{2} + \frac {5}{2} \, x\right )^{3} + 2 \, {\left (x^{3} + 5 \, x^{2}\right )} \log \relax (2) + x + 5}{2 \, {\left (x^{3} + 5 \, x^{2}\right )} \log \relax (2)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 29, normalized size = 1.21
method | result | size |
norman | \(\frac {x^{2}+x \ln \left (\frac {1}{2} x^{2}+\frac {5}{2} x \right )^{4}-\frac {1}{2 \ln \relax (2)}}{x}\) | \(29\) |
risch | \(\ln \left (\frac {1}{2} x^{2}+\frac {5}{2} x \right )^{4}+\frac {2 x^{2} \ln \relax (2)-1}{2 \ln \relax (2) x}\) | \(32\) |
default | \(\frac {-\frac {1}{x}+2 \ln \relax (2) \ln \left (x^{2}+5 x \right )^{4}+2 x \ln \relax (2)-8 \ln \relax (2)^{4} \ln \left (\left (5+x \right ) x \right )-12 \ln \relax (2)^{3} \ln \relax (x )^{2}+24 \ln \relax (2)^{3} \ln \relax (x ) \ln \left (x^{2}+5 x \right )-24 \ln \relax (2)^{3} \ln \relax (x ) \ln \left (1+\frac {x}{5}\right )+24 \ln \relax (2)^{3} \ln \left (5+x \right ) \ln \left (x^{2}+5 x \right )+24 \ln \relax (2)^{3} \ln \left (-\frac {x}{5}\right ) \ln \left (1+\frac {x}{5}\right )-12 \ln \relax (2)^{3} \ln \left (5+x \right )^{2}-24 \ln \relax (2)^{3} \ln \left (-\frac {x}{5}\right ) \ln \left (5+x \right )-8 \ln \relax (2)^{2} \ln \left (x^{2}+5 x \right )^{3}}{2 \ln \relax (2)}\) | \(160\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 162, normalized size = 6.75 \begin {gather*} \frac {2 \, \log \relax (2) \log \left (x + 5\right )^{4} - 8 \, \log \relax (2)^{4} \log \relax (x) + 12 \, \log \relax (2)^{3} \log \relax (x)^{2} - 8 \, \log \relax (2)^{2} \log \relax (x)^{3} + 2 \, \log \relax (2) \log \relax (x)^{4} - 8 \, {\left (\log \relax (2)^{2} - \log \relax (2) \log \relax (x)\right )} \log \left (x + 5\right )^{3} + 12 \, {\left (\log \relax (2)^{3} - 2 \, \log \relax (2)^{2} \log \relax (x) + \log \relax (2) \log \relax (x)^{2}\right )} \log \left (x + 5\right )^{2} + 2 \, {\left (x - 5 \, \log \left (x + 5\right )\right )} \log \relax (2) - 8 \, {\left (\log \relax (2)^{4} - 3 \, \log \relax (2)^{3} \log \relax (x) + 3 \, \log \relax (2)^{2} \log \relax (x)^{2} - \log \relax (2) \log \relax (x)^{3}\right )} \log \left (x + 5\right ) + 10 \, \log \relax (2) \log \left (x + 5\right ) - \frac {1}{x}}{2 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.91, size = 23, normalized size = 0.96 \begin {gather*} x-\frac {1}{2\,x\,\ln \relax (2)}+{\ln \left (\frac {x^2}{2}+\frac {5\,x}{2}\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 27, normalized size = 1.12 \begin {gather*} \frac {2 x \log {\relax (2 )} - \frac {1}{x}}{2 \log {\relax (2 )}} + \log {\left (\frac {x^{2}}{2} + \frac {5 x}{2} \right )}^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________