Optimal. Leaf size=25 \[ 2-5 e^{-x} x+\log \left (3+\frac {1}{5} \left (e^x+\frac {1}{x}+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 3.32, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5 x-70 x^2+e^{2 x} x^2+70 x^3+5 x^4+e^x \left (-1-4 x^2+5 x^3\right )}{e^{2 x} x^2+e^x \left (x+15 x^2+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (-5 x-70 x^2+e^{2 x} x^2+70 x^3+5 x^4+e^x \left (-1-4 x^2+5 x^3\right )\right )}{x \left (1+15 x+e^x x+x^2\right )} \, dx\\ &=\int \left (1+\frac {e^{-x} \left (-1-x-19 x^2+4 x^3\right )}{x^2}+\frac {e^{-x} \left (1+16 x+30 x^2+212 x^3+29 x^4+x^5\right )}{x^2 \left (1+15 x+e^x x+x^2\right )}\right ) \, dx\\ &=x+\int \frac {e^{-x} \left (-1-x-19 x^2+4 x^3\right )}{x^2} \, dx+\int \frac {e^{-x} \left (1+16 x+30 x^2+212 x^3+29 x^4+x^5\right )}{x^2 \left (1+15 x+e^x x+x^2\right )} \, dx\\ &=x+\int \left (-19 e^{-x}-\frac {e^{-x}}{x^2}-\frac {e^{-x}}{x}+4 e^{-x} x\right ) \, dx+\int \left (\frac {30 e^{-x}}{1+15 x+e^x x+x^2}+\frac {e^{-x}}{x^2 \left (1+15 x+e^x x+x^2\right )}+\frac {16 e^{-x}}{x \left (1+15 x+e^x x+x^2\right )}+\frac {212 e^{-x} x}{1+15 x+e^x x+x^2}+\frac {29 e^{-x} x^2}{1+15 x+e^x x+x^2}+\frac {e^{-x} x^3}{1+15 x+e^x x+x^2}\right ) \, dx\\ &=x+4 \int e^{-x} x \, dx+16 \int \frac {e^{-x}}{x \left (1+15 x+e^x x+x^2\right )} \, dx-19 \int e^{-x} \, dx+29 \int \frac {e^{-x} x^2}{1+15 x+e^x x+x^2} \, dx+30 \int \frac {e^{-x}}{1+15 x+e^x x+x^2} \, dx+212 \int \frac {e^{-x} x}{1+15 x+e^x x+x^2} \, dx-\int \frac {e^{-x}}{x^2} \, dx-\int \frac {e^{-x}}{x} \, dx+\int \frac {e^{-x}}{x^2 \left (1+15 x+e^x x+x^2\right )} \, dx+\int \frac {e^{-x} x^3}{1+15 x+e^x x+x^2} \, dx\\ &=19 e^{-x}+\frac {e^{-x}}{x}+x-4 e^{-x} x-\text {Ei}(-x)+4 \int e^{-x} \, dx+16 \int \frac {e^{-x}}{x \left (1+15 x+e^x x+x^2\right )} \, dx+29 \int \frac {e^{-x} x^2}{1+15 x+e^x x+x^2} \, dx+30 \int \frac {e^{-x}}{1+15 x+e^x x+x^2} \, dx+212 \int \frac {e^{-x} x}{1+15 x+e^x x+x^2} \, dx+\int \frac {e^{-x}}{x} \, dx+\int \frac {e^{-x}}{x^2 \left (1+15 x+e^x x+x^2\right )} \, dx+\int \frac {e^{-x} x^3}{1+15 x+e^x x+x^2} \, dx\\ &=15 e^{-x}+\frac {e^{-x}}{x}+x-4 e^{-x} x+16 \int \frac {e^{-x}}{x \left (1+15 x+e^x x+x^2\right )} \, dx+29 \int \frac {e^{-x} x^2}{1+15 x+e^x x+x^2} \, dx+30 \int \frac {e^{-x}}{1+15 x+e^x x+x^2} \, dx+212 \int \frac {e^{-x} x}{1+15 x+e^x x+x^2} \, dx+\int \frac {e^{-x}}{x^2 \left (1+15 x+e^x x+x^2\right )} \, dx+\int \frac {e^{-x} x^3}{1+15 x+e^x x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.02, size = 33, normalized size = 1.32 \begin {gather*} x-5 e^{-x} x-\log (x)+\log \left (e^{-x} \left (1+\left (15+e^x\right ) x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 29, normalized size = 1.16 \begin {gather*} {\left (e^{x} \log \left (\frac {x^{2} + x e^{x} + 15 \, x + 1}{x}\right ) - 5 \, x\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 31, normalized size = 1.24 \begin {gather*} {\left (e^{x} \log \left (x^{2} + x e^{x} + 15 \, x + 1\right ) - e^{x} \log \relax (x) - 5 \, x\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 25, normalized size = 1.00
method | result | size |
risch | \(-5 x \,{\mathrm e}^{-x}+\ln \left ({\mathrm e}^{x}+\frac {x^{2}+15 x +1}{x}\right )\) | \(25\) |
norman | \(-5 x \,{\mathrm e}^{-x}-\ln \relax (x )+\ln \left ({\mathrm e}^{x} x +x^{2}+15 x +1\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 25, normalized size = 1.00 \begin {gather*} -5 \, x e^{\left (-x\right )} + \log \left (\frac {x^{2} + x e^{x} + 15 \, x + 1}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.20, size = 25, normalized size = 1.00 \begin {gather*} \ln \left (15\,x+x\,{\mathrm {e}}^x+x^2+1\right )-\ln \relax (x)-5\,x\,{\mathrm {e}}^{-x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 20, normalized size = 0.80 \begin {gather*} - 5 x e^{- x} + \log {\left (e^{x} + \frac {x^{2} + 15 x + 1}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________