Optimal. Leaf size=26 \[ -7+3 x-\frac {x-e^{\left .\frac {1}{3}\right /x} (4+x)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 27, normalized size of antiderivative = 1.04, number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {12, 14, 6742, 2212, 2209} \begin {gather*} 3 x+e^{\left .\frac {1}{3}\right /x}+\frac {4 e^{\left .\frac {1}{3}\right /x}}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2209
Rule 2212
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {e^{\left .\frac {1}{3}\right /x} (-4-13 x)+9 x^3}{x^3} \, dx\\ &=\frac {1}{3} \int \left (9-\frac {e^{\left .\frac {1}{3}\right /x} (4+13 x)}{x^3}\right ) \, dx\\ &=3 x-\frac {1}{3} \int \frac {e^{\left .\frac {1}{3}\right /x} (4+13 x)}{x^3} \, dx\\ &=3 x-\frac {1}{3} \int \left (\frac {4 e^{\left .\frac {1}{3}\right /x}}{x^3}+\frac {13 e^{\left .\frac {1}{3}\right /x}}{x^2}\right ) \, dx\\ &=3 x-\frac {4}{3} \int \frac {e^{\left .\frac {1}{3}\right /x}}{x^3} \, dx-\frac {13}{3} \int \frac {e^{\left .\frac {1}{3}\right /x}}{x^2} \, dx\\ &=13 e^{\left .\frac {1}{3}\right /x}+\frac {4 e^{\left .\frac {1}{3}\right /x}}{x}+3 x+4 \int \frac {e^{\left .\frac {1}{3}\right /x}}{x^2} \, dx\\ &=e^{\left .\frac {1}{3}\right /x}+\frac {4 e^{\left .\frac {1}{3}\right /x}}{x}+3 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 27, normalized size = 1.04 \begin {gather*} e^{\left .\frac {1}{3}\right /x}+\frac {4 e^{\left .\frac {1}{3}\right /x}}{x}+3 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 20, normalized size = 0.77 \begin {gather*} \frac {3 \, x^{2} + {\left (x + 4\right )} e^{\left (\frac {1}{3 \, x}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 25, normalized size = 0.96 \begin {gather*} x {\left (\frac {e^{\left (\frac {1}{3 \, x}\right )}}{x} + \frac {4 \, e^{\left (\frac {1}{3 \, x}\right )}}{x^{2}} + 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 18, normalized size = 0.69
method | result | size |
risch | \(3 x +\frac {\left (4+x \right ) {\mathrm e}^{\frac {1}{3 x}}}{x}\) | \(18\) |
derivativedivides | \(3 x +\frac {4 \,{\mathrm e}^{\frac {1}{3 x}}}{x}+{\mathrm e}^{\frac {1}{3 x}}\) | \(22\) |
default | \(3 x +\frac {4 \,{\mathrm e}^{\frac {1}{3 x}}}{x}+{\mathrm e}^{\frac {1}{3 x}}\) | \(22\) |
norman | \(\frac {x^{2} {\mathrm e}^{\frac {1}{3 x}}+3 x^{3}+4 \,{\mathrm e}^{\frac {1}{3 x}} x}{x^{2}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.37, size = 21, normalized size = 0.81 \begin {gather*} 3 \, x + 13 \, e^{\left (\frac {1}{3 \, x}\right )} - 12 \, \Gamma \left (2, -\frac {1}{3 \, x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.50, size = 21, normalized size = 0.81 \begin {gather*} 3\,x+{\mathrm {e}}^{\frac {1}{3\,x}}+\frac {4\,{\mathrm {e}}^{\frac {1}{3\,x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 14, normalized size = 0.54 \begin {gather*} 3 x + \frac {\left (x + 4\right ) e^{\frac {1}{3 x}}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________