Optimal. Leaf size=28 \[ -e^{-x+\frac {\log \left (\frac {16-\log (3+x)}{e}\right )}{x}} x^2 \]
________________________________________________________________________________________
Rubi [F] time = 18.43, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-x^2+x \log \left (x^2\right )+\log \left (\frac {16-\log (3+x)}{e}\right )}{x}} \left (95 x-16 x^2-16 x^3+\left (-6 x+x^2+x^3\right ) \log (3+x)+(-48-16 x+(3+x) \log (3+x)) \log \left (\frac {16-\log (3+x)}{e}\right )\right )}{-48 x^2-16 x^3+\left (3 x^2+x^3\right ) \log (3+x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \left (-48-111 x+16 x^2+16 x^3+16 (3+x) \log (16-\log (3+x))-(3+x) \log (3+x) \left (-1-2 x+x^2+\log (16-\log (3+x))\right )\right )}{3+x} \, dx\\ &=\int \left (\frac {e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \left (-48-111 x+16 x^2+16 x^3+3 \log (3+x)+7 x \log (3+x)-x^2 \log (3+x)-x^3 \log (3+x)\right )}{3+x}-e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} (-16+\log (3+x)) \log (16-\log (3+x))\right ) \, dx\\ &=\int \frac {e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \left (-48-111 x+16 x^2+16 x^3+3 \log (3+x)+7 x \log (3+x)-x^2 \log (3+x)-x^3 \log (3+x)\right )}{3+x} \, dx-\int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} (-16+\log (3+x)) \log (16-\log (3+x)) \, dx\\ &=\int \frac {e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \left (-48-111 x+16 x^2+16 x^3-\left (-3-7 x+x^2+x^3\right ) \log (3+x)\right )}{3+x} \, dx-\int \left (-16 e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (16-\log (3+x))+e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \log (16-\log (3+x))\right ) \, dx\\ &=16 \int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (16-\log (3+x)) \, dx+\int \left (\frac {e^{-\frac {1}{x}-x} \left (-48-111 x+16 x^2+16 x^3\right ) (16-\log (3+x))^{-1+\frac {1}{x}}}{3+x}-e^{-\frac {1}{x}-x} \left (-1-2 x+x^2\right ) (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x)\right ) \, dx-\int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \log (16-\log (3+x)) \, dx\\ &=16 \int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (16-\log (3+x)) \, dx+\int \frac {e^{-\frac {1}{x}-x} \left (-48-111 x+16 x^2+16 x^3\right ) (16-\log (3+x))^{-1+\frac {1}{x}}}{3+x} \, dx-\int e^{-\frac {1}{x}-x} \left (-1-2 x+x^2\right ) (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \, dx-\int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \log (16-\log (3+x)) \, dx\\ &=16 \int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (16-\log (3+x)) \, dx+\int \left (-15 e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}}-32 e^{-\frac {1}{x}-x} x (16-\log (3+x))^{-1+\frac {1}{x}}+16 e^{-\frac {1}{x}-x} x^2 (16-\log (3+x))^{-1+\frac {1}{x}}-\frac {3 e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}}}{3+x}\right ) \, dx-\int \left (-e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x)-2 e^{-\frac {1}{x}-x} x (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x)+e^{-\frac {1}{x}-x} x^2 (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x)\right ) \, dx-\int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \log (16-\log (3+x)) \, dx\\ &=2 \int e^{-\frac {1}{x}-x} x (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \, dx-3 \int \frac {e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}}}{3+x} \, dx-15 \int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \, dx+16 \int e^{-\frac {1}{x}-x} x^2 (16-\log (3+x))^{-1+\frac {1}{x}} \, dx+16 \int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (16-\log (3+x)) \, dx-32 \int e^{-\frac {1}{x}-x} x (16-\log (3+x))^{-1+\frac {1}{x}} \, dx+\int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \, dx-\int e^{-\frac {1}{x}-x} x^2 (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \, dx-\int e^{-\frac {1}{x}-x} (16-\log (3+x))^{-1+\frac {1}{x}} \log (3+x) \log (16-\log (3+x)) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 1.00 \begin {gather*} -e^{-\frac {1}{x}-x} x^2 (16-\log (3+x))^{\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 32, normalized size = 1.14 \begin {gather*} -e^{\left (-\frac {x^{2} - x \log \left (x^{2}\right ) - \log \left (-{\left (\log \left (x + 3\right ) - 16\right )} e^{\left (-1\right )}\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.32, size = 29, normalized size = 1.04 \begin {gather*} -e^{\left (-x + \frac {\log \left (-e^{\left (-1\right )} \log \left (x + 3\right ) + 16 \, e^{\left (-1\right )}\right )}{x} + \log \left (x^{2}\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.11, size = 75, normalized size = 2.68
method | result | size |
risch | \(-x^{2} \left (\left (-\ln \left (3+x \right )+16\right ) {\mathrm e}^{-1}\right )^{\frac {1}{x}} {\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \mathrm {csgn}\left (i x \right )^{2}}{2}-x}\) | \(75\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 28, normalized size = 1.00 \begin {gather*} -x^{2} e^{\left (-x + \frac {\log \left (-\log \left (x + 3\right ) + 16\right )}{x} - \frac {1}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.92, size = 26, normalized size = 0.93 \begin {gather*} -x^2\,{\mathrm {e}}^{-x}\,{\left (16\,{\mathrm {e}}^{-1}-\ln \left (x+3\right )\,{\mathrm {e}}^{-1}\right )}^{1/x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.60, size = 26, normalized size = 0.93 \begin {gather*} - e^{\frac {- x^{2} + x \log {\left (x^{2} \right )} + \log {\left (\frac {16 - \log {\left (x + 3 \right )}}{e} \right )}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________