Optimal. Leaf size=25 \[ 5+e^{-9+x}+e^{-x+x^2}+\log \left (2 e^{2+x} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 18, normalized size of antiderivative = 0.72, number of steps used = 8, number of rules used = 4, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.121, Rules used = {14, 2236, 2194, 43} \begin {gather*} e^{x^2-x}+x+e^{x-9}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2194
Rule 2236
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{-x+x^2} (-1+2 x)+\frac {e^9+e^9 x+e^x x}{e^9 x}\right ) \, dx\\ &=\frac {\int \frac {e^9+e^9 x+e^x x}{x} \, dx}{e^9}+\int e^{-x+x^2} (-1+2 x) \, dx\\ &=e^{-x+x^2}+\frac {\int \left (e^x+\frac {e^9 (1+x)}{x}\right ) \, dx}{e^9}\\ &=e^{-x+x^2}+\frac {\int e^x \, dx}{e^9}+\int \frac {1+x}{x} \, dx\\ &=e^{-9+x}+e^{-x+x^2}+\int \left (1+\frac {1}{x}\right ) \, dx\\ &=e^{-9+x}+e^{-x+x^2}+x+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 18, normalized size = 0.72 \begin {gather*} e^{-9+x}+e^{-x+x^2}+x+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 16, normalized size = 0.64 \begin {gather*} x + e^{\left (x^{2} - x\right )} + e^{\left (x - 9\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 24, normalized size = 0.96 \begin {gather*} {\left (x e^{9} + e^{9} \log \relax (x) + e^{\left (x^{2} - x + 9\right )} + e^{x}\right )} e^{\left (-9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.60
method | result | size |
risch | \(x +{\mathrm e}^{x -9}+{\mathrm e}^{x \left (x -1\right )}+\ln \relax (x )\) | \(15\) |
norman | \(x +{\mathrm e}^{x -9}+{\mathrm e}^{x^{2}-x}+\ln \relax (x )\) | \(17\) |
default | \(x +\ln \relax (x )+{\mathrm e}^{x} {\mathrm e}^{-9}+{\mathrm e}^{x^{2}-x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.39, size = 74, normalized size = 2.96 \begin {gather*} \frac {1}{2} i \, \sqrt {\pi } \operatorname {erf}\left (i \, x - \frac {1}{2} i\right ) e^{\left (-\frac {1}{4}\right )} + \frac {1}{2} \, {\left (\frac {\sqrt {\pi } {\left (2 \, x - 1\right )} {\left (\operatorname {erf}\left (\frac {1}{2} \, \sqrt {-{\left (2 \, x - 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (2 \, x - 1\right )}^{2}}} + 2 \, e^{\left (\frac {1}{4} \, {\left (2 \, x - 1\right )}^{2}\right )}\right )} e^{\left (-\frac {1}{4}\right )} + x + e^{\left (x - 9\right )} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 16, normalized size = 0.64 \begin {gather*} x+{\mathrm {e}}^{x-9}+{\mathrm {e}}^{x^2-x}+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 15, normalized size = 0.60 \begin {gather*} x + e^{x - 9} + e^{x^{2} - x} + \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________