Optimal. Leaf size=19 \[ e^{2 x}+4 x-\frac {x^2}{3+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 16, normalized size of antiderivative = 0.84, number of steps used = 6, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {27, 6688, 2194, 683} \begin {gather*} 3 x+e^{2 x}-\frac {9}{x+3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 683
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {36+18 x+3 x^2+e^{2 x} \left (18+12 x+2 x^2\right )}{(3+x)^2} \, dx\\ &=\int \left (2 e^{2 x}+\frac {3 \left (12+6 x+x^2\right )}{(3+x)^2}\right ) \, dx\\ &=2 \int e^{2 x} \, dx+3 \int \frac {12+6 x+x^2}{(3+x)^2} \, dx\\ &=e^{2 x}+3 \int \left (1+\frac {3}{(3+x)^2}\right ) \, dx\\ &=e^{2 x}+3 x-\frac {9}{3+x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 16, normalized size = 0.84 \begin {gather*} e^{2 x}+3 x-\frac {9}{3+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 24, normalized size = 1.26 \begin {gather*} \frac {3 \, x^{2} + {\left (x + 3\right )} e^{\left (2 \, x\right )} + 9 \, x - 9}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 28, normalized size = 1.47 \begin {gather*} \frac {3 \, x^{2} + x e^{\left (2 \, x\right )} + 9 \, x + 3 \, e^{\left (2 \, x\right )} - 9}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.45, size = 16, normalized size = 0.84
method | result | size |
default | \(-\frac {9}{3+x}+3 x +{\mathrm e}^{2 x}\) | \(16\) |
risch | \(-\frac {9}{3+x}+3 x +{\mathrm e}^{2 x}\) | \(16\) |
norman | \(\frac {x \,{\mathrm e}^{2 x}+3 x^{2}+3 \,{\mathrm e}^{2 x}-36}{3+x}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 3 \, x + \frac {{\left (x^{2} + 6 \, x\right )} e^{\left (2 \, x\right )}}{x^{2} + 6 \, x + 9} - \frac {18 \, e^{\left (-6\right )} E_{2}\left (-2 \, x - 6\right )}{x + 3} - \frac {9}{x + 3} - 18 \, \int \frac {e^{\left (2 \, x\right )}}{x^{3} + 9 \, x^{2} + 27 \, x + 27}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 15, normalized size = 0.79 \begin {gather*} 3\,x+{\mathrm {e}}^{2\,x}-\frac {9}{x+3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 12, normalized size = 0.63 \begin {gather*} 3 x + e^{2 x} - \frac {9}{x + 3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________