Optimal. Leaf size=21 \[ e^{\frac {4 e^{-2 x}}{\log (5)}}+x^2 \log (\log (2)) \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 30, normalized size of antiderivative = 1.43, number of steps used = 5, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 6742, 2282, 2194} \begin {gather*} \frac {x^2 \log (25) \log (\log (2))}{2 \log (5)}+e^{\frac {4 e^{-2 x}}{\log (5)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{-2 x} \left (-8 e^{\frac {4 e^{-2 x}}{\log (5)}}+2 e^{2 x} x \log (5) \log (\log (2))\right ) \, dx}{\log (5)}\\ &=\frac {\int \left (-8 e^{-2 x+\frac {4 e^{-2 x}}{\log (5)}}+x \log (25) \log (\log (2))\right ) \, dx}{\log (5)}\\ &=\frac {x^2 \log (25) \log (\log (2))}{2 \log (5)}-\frac {8 \int e^{-2 x+\frac {4 e^{-2 x}}{\log (5)}} \, dx}{\log (5)}\\ &=\frac {x^2 \log (25) \log (\log (2))}{2 \log (5)}+\frac {4 \operatorname {Subst}\left (\int e^{\frac {4 x}{\log (5)}} \, dx,x,e^{-2 x}\right )}{\log (5)}\\ &=e^{\frac {4 e^{-2 x}}{\log (5)}}+\frac {x^2 \log (25) \log (\log (2))}{2 \log (5)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 21, normalized size = 1.00 \begin {gather*} e^{\frac {4 e^{-2 x}}{\log (5)}}+x^2 \log (\log (2)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.49, size = 19, normalized size = 0.90 \begin {gather*} x^{2} \log \left (\log \relax (2)\right ) + e^{\left (\frac {4 \, e^{\left (-2 \, x\right )}}{\log \relax (5)}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.12, size = 44, normalized size = 2.10 \begin {gather*} \frac {{\left (x^{2} e^{\left (-2 \, x\right )} \log \relax (5) \log \left (\log \relax (2)\right ) + e^{\left (-\frac {2 \, {\left (x \log \relax (5) - 2 \, e^{\left (-2 \, x\right )}\right )}}{\log \relax (5)}\right )} \log \relax (5)\right )} e^{\left (2 \, x\right )}}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 0.95
method | result | size |
risch | \({\mathrm e}^{\frac {4 \,{\mathrm e}^{-2 x}}{\ln \relax (5)}}+x^{2} \ln \left (\ln \relax (2)\right )\) | \(20\) |
default | \(\frac {x^{2} \ln \relax (5) \ln \left (\ln \relax (2)\right )+{\mathrm e}^{\frac {4 \,{\mathrm e}^{-2 x}}{\ln \relax (5)}} \ln \relax (5)}{\ln \relax (5)}\) | \(34\) |
norman | \(\left ({\mathrm e}^{2 x} {\mathrm e}^{\frac {4 \,{\mathrm e}^{-2 x}}{\ln \relax (5)}}+x^{2} \ln \left (\ln \relax (2)\right ) {\mathrm e}^{2 x}\right ) {\mathrm e}^{-2 x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 29, normalized size = 1.38 \begin {gather*} \frac {x^{2} \log \relax (5) \log \left (\log \relax (2)\right ) + e^{\left (\frac {4 \, e^{\left (-2 \, x\right )}}{\log \relax (5)}\right )} \log \relax (5)}{\log \relax (5)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.47, size = 19, normalized size = 0.90 \begin {gather*} {\mathrm {e}}^{\frac {4\,{\mathrm {e}}^{-2\,x}}{\ln \relax (5)}}+x^2\,\ln \left (\ln \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 0.90 \begin {gather*} x^{2} \log {\left (\log {\relax (2 )} \right )} + e^{\frac {4 e^{- 2 x}}{\log {\relax (5 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________