Optimal. Leaf size=28 \[ x+\left (\frac {1}{2} e^{\frac {1}{5}-x}-e^x\right ) (5-x) x \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 49, normalized size of antiderivative = 1.75, number of steps used = 17, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {2196, 2194, 2176} \begin {gather*} -\frac {1}{2} e^{\frac {1}{5} (1-5 x)} x^2+e^x x^2+\frac {5}{2} e^{\frac {1}{5} (1-5 x)} x-5 e^x x+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\int e^{\frac {1}{5} (1-5 x-5 \log (2))} \left (5-7 x+x^2\right ) \, dx+\int e^x \left (-5-3 x+x^2\right ) \, dx\\ &=x+\int \left (-5 e^x-3 e^x x+e^x x^2\right ) \, dx+\int \left (5 e^{\frac {1}{5} (1-5 x-5 \log (2))}-7 e^{\frac {1}{5} (1-5 x-5 \log (2))} x+e^{\frac {1}{5} (1-5 x-5 \log (2))} x^2\right ) \, dx\\ &=x-3 \int e^x x \, dx-5 \int e^x \, dx+5 \int e^{\frac {1}{5} (1-5 x-5 \log (2))} \, dx-7 \int e^{\frac {1}{5} (1-5 x-5 \log (2))} x \, dx+\int e^x x^2 \, dx+\int e^{\frac {1}{5} (1-5 x-5 \log (2))} x^2 \, dx\\ &=-\frac {5}{2} e^{\frac {1}{5} (1-5 x)}-5 e^x+x+\frac {7}{2} e^{\frac {1}{5} (1-5 x)} x-3 e^x x-\frac {1}{2} e^{\frac {1}{5} (1-5 x)} x^2+e^x x^2-2 \int e^x x \, dx+2 \int e^{\frac {1}{5} (1-5 x-5 \log (2))} x \, dx+3 \int e^x \, dx-7 \int e^{\frac {1}{5} (1-5 x-5 \log (2))} \, dx\\ &=e^{\frac {1}{5} (1-5 x)}-2 e^x+x+\frac {5}{2} e^{\frac {1}{5} (1-5 x)} x-5 e^x x-\frac {1}{2} e^{\frac {1}{5} (1-5 x)} x^2+e^x x^2+2 \int e^x \, dx+2 \int e^{\frac {1}{5} (1-5 x-5 \log (2))} \, dx\\ &=x+\frac {5}{2} e^{\frac {1}{5} (1-5 x)} x-5 e^x x-\frac {1}{2} e^{\frac {1}{5} (1-5 x)} x^2+e^x x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 27, normalized size = 0.96 \begin {gather*} x-\frac {1}{2} e^{\frac {1}{5}-x} (-5+x) x+e^x (-5+x) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 43, normalized size = 1.54 \begin {gather*} -{\left (x^{2} - {\left ({\left (x^{2} - 5 \, x\right )} e^{\left (2 \, x\right )} + x e^{x}\right )} e^{\left (\log \relax (2) - \frac {1}{5}\right )} - 5 \, x\right )} e^{\left (-x - \log \relax (2) + \frac {1}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 31, normalized size = 1.11 \begin {gather*} {\left (x^{2} - 5 \, x\right )} e^{x} - {\left (x^{2} - 5 \, x\right )} e^{\left (-x - \log \relax (2) + \frac {1}{5}\right )} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.07
method | result | size |
risch | \(\left (x^{2}-5 x \right ) {\mathrm e}^{x}+\frac {\left (-x^{2}+5 x \right ) {\mathrm e}^{-x +\frac {1}{5}}}{2}+x\) | \(30\) |
norman | \(\left ({\mathrm e}^{x} x +{\mathrm e}^{2 x} x^{2}+\frac {5 x \,{\mathrm e}^{\frac {1}{5}}}{2}-5 x \,{\mathrm e}^{2 x}-\frac {x^{2} {\mathrm e}^{\frac {1}{5}}}{2}\right ) {\mathrm e}^{-x}\) | \(38\) |
default | \(x -\frac {23 \,{\mathrm e}^{-\ln \relax (2)-x +\frac {1}{5}} \left (-\ln \relax (2)-x +\frac {1}{5}\right )}{5}+\frac {24 \,{\mathrm e}^{-\ln \relax (2)-x +\frac {1}{5}}}{25}-{\mathrm e}^{-\ln \relax (2)-x +\frac {1}{5}} \left (-\ln \relax (2)-x +\frac {1}{5}\right )^{2}-\frac {23 \ln \relax (2) {\mathrm e}^{-\ln \relax (2)-x +\frac {1}{5}}}{5}-\ln \relax (2)^{2} {\mathrm e}^{-\ln \relax (2)-x +\frac {1}{5}}-2 \,{\mathrm e}^{-\ln \relax (2)-x +\frac {1}{5}} \left (-\ln \relax (2)-x +\frac {1}{5}\right ) \ln \relax (2)+{\mathrm e}^{x} x^{2}-5 \,{\mathrm e}^{x} x\) | \(123\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 55, normalized size = 1.96 \begin {gather*} -\frac {1}{2} \, {\left (x^{2} e^{\frac {1}{5}} + 2 \, x e^{\frac {1}{5}} + 2 \, e^{\frac {1}{5}}\right )} e^{\left (-x\right )} + \frac {7}{2} \, {\left (x e^{\frac {1}{5}} + e^{\frac {1}{5}}\right )} e^{\left (-x\right )} + {\left (x^{2} - 5 \, x\right )} e^{x} + x - \frac {5}{2} \, e^{\left (-x + \frac {1}{5}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 33, normalized size = 1.18 \begin {gather*} x+x^2\,{\mathrm {e}}^x+\frac {5\,x\,{\mathrm {e}}^{\frac {1}{5}-x}}{2}-5\,x\,{\mathrm {e}}^x-\frac {x^2\,{\mathrm {e}}^{\frac {1}{5}-x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.16, size = 36, normalized size = 1.29 \begin {gather*} x + \frac {\left (2 x^{2} - 10 x\right ) e^{x}}{2} + \frac {\left (- x^{2} e^{\frac {1}{5}} + 5 x e^{\frac {1}{5}}\right ) e^{- x}}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________