Optimal. Leaf size=35 \[ -x+\frac {1}{5} \left (x^2+\log (x)\right )-\log \left (\frac {1}{5} x \left (-x^2+\log \left (\frac {\log (x)}{x^2}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.53, antiderivative size = 33, normalized size of antiderivative = 0.94, number of steps used = 7, number of rules used = 5, integrand size = 65, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {6741, 12, 6742, 14, 6684} \begin {gather*} \frac {x^2}{5}-\log \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right )-x-\frac {4 \log (x)}{5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5-\left (10+14 x^2+5 x^3-2 x^4\right ) \log (x)-\left (-4-5 x+2 x^2\right ) \log (x) \log \left (\frac {\log (x)}{x^2}\right )}{5 x \log (x) \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right )} \, dx\\ &=\frac {1}{5} \int \frac {5-\left (10+14 x^2+5 x^3-2 x^4\right ) \log (x)-\left (-4-5 x+2 x^2\right ) \log (x) \log \left (\frac {\log (x)}{x^2}\right )}{x \log (x) \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right )} \, dx\\ &=\frac {1}{5} \int \left (\frac {-4-5 x+2 x^2}{x}-\frac {5 \left (-1+2 \log (x)+2 x^2 \log (x)\right )}{x \log (x) \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right )}\right ) \, dx\\ &=\frac {1}{5} \int \frac {-4-5 x+2 x^2}{x} \, dx-\int \frac {-1+2 \log (x)+2 x^2 \log (x)}{x \log (x) \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right )} \, dx\\ &=-\log \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right )+\frac {1}{5} \int \left (-5-\frac {4}{x}+2 x\right ) \, dx\\ &=-x+\frac {x^2}{5}-\frac {4 \log (x)}{5}-\log \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 33, normalized size = 0.94 \begin {gather*} -x+\frac {x^2}{5}-\frac {4 \log (x)}{5}-\log \left (x^2-\log \left (\frac {\log (x)}{x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 29, normalized size = 0.83 \begin {gather*} \frac {1}{5} \, x^{2} - x - \log \left (-x^{2} + \log \left (\frac {\log \relax (x)}{x^{2}}\right )\right ) - \frac {4}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 29, normalized size = 0.83 \begin {gather*} \frac {1}{5} \, x^{2} - x - \log \left (x^{2} + 2 \, \log \relax (x) - \log \left (\log \relax (x)\right )\right ) - \frac {4}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.09, size = 158, normalized size = 4.51
method | result | size |
risch | \(\frac {x^{2}}{5}-x -\frac {4 \ln \relax (x )}{5}-\ln \left (\ln \left (\ln \relax (x )\right )+\frac {i \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x^{2}}\right )^{2}-\pi \,\mathrm {csgn}\left (i \ln \relax (x )\right ) \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right )-\pi \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x^{2}}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \ln \relax (x )}{x^{2}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x^{2}}\right )+2 i x^{2}+4 i \ln \relax (x )\right )}{2}\right )\) | \(158\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 29, normalized size = 0.83 \begin {gather*} \frac {1}{5} \, x^{2} - x - \log \left (-x^{2} - 2 \, \log \relax (x) + \log \left (\log \relax (x)\right )\right ) - \frac {4}{5} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.49, size = 29, normalized size = 0.83 \begin {gather*} \frac {x^2}{5}-\ln \left (\ln \left (\frac {\ln \relax (x)}{x^2}\right )-x^2\right )-\frac {4\,\ln \relax (x)}{5}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.35, size = 26, normalized size = 0.74 \begin {gather*} \frac {x^{2}}{5} - x - \frac {4 \log {\relax (x )}}{5} - \log {\left (- x^{2} + \log {\left (\frac {\log {\relax (x )}}{x^{2}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________