Optimal. Leaf size=26 \[ e^{\frac {2 (4-x)^2}{x^2}-\frac {4}{x}-2 x (4+x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.26, antiderivative size = 25, normalized size of antiderivative = 0.96, number of steps used = 1, number of rules used = 1, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6706} \begin {gather*} e^{\frac {2 \left (-x^4-4 x^3+x^2-10 x+16\right )}{x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{\frac {2 \left (16-10 x+x^2-4 x^3-x^4\right )}{x^2}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 22, normalized size = 0.85 \begin {gather*} e^{2+\frac {32}{x^2}-\frac {20}{x}-8 x-2 x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 24, normalized size = 0.92 \begin {gather*} e^{\left (-\frac {2 \, {\left (x^{4} + 4 \, x^{3} - x^{2} + 10 \, x - 16\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 0.81 \begin {gather*} e^{\left (-2 \, x^{2} - 8 \, x - \frac {20}{x} + \frac {32}{x^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 25, normalized size = 0.96
method | result | size |
risch | \({\mathrm e}^{-\frac {2 \left (x^{4}+4 x^{3}-x^{2}+10 x -16\right )}{x^{2}}}\) | \(25\) |
norman | \({\mathrm e}^{\frac {-2 x^{4}-8 x^{3}+2 x^{2}-20 x +32}{x^{2}}}\) | \(26\) |
gosper | \({\mathrm e}^{-\frac {2 \left (x^{4}+4 x^{3}-x^{2}+10 x -16\right )}{x^{2}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 21, normalized size = 0.81 \begin {gather*} e^{\left (-2 \, x^{2} - 8 \, x - \frac {20}{x} + \frac {32}{x^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.39, size = 25, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^{-8\,x}\,{\mathrm {e}}^2\,{\mathrm {e}}^{-2\,x^2}\,{\mathrm {e}}^{-\frac {20}{x}}\,{\mathrm {e}}^{\frac {32}{x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 24, normalized size = 0.92 \begin {gather*} e^{\frac {2 \left (- x^{4} - 4 x^{3} + x^{2} - 10 x + 16\right )}{x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________