Optimal. Leaf size=28 \[ 1-\log \left (-\left (5-\frac {3}{x}\right )^2+\frac {1}{x^2}+5 x (5+x) \log (4)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.12, antiderivative size = 32, normalized size of antiderivative = 1.14, number of steps used = 3, number of rules used = 2, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {2074, 1587} \begin {gather*} 2 \log (x)-\log \left (-5 x^4 \log (4)-25 x^3 \log (4)+25 x^2-30 x+8\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2}{x}-\frac {5 \left (6-10 x+15 x^2 \log (4)+4 x^3 \log (4)\right )}{-8+30 x-25 x^2+25 x^3 \log (4)+5 x^4 \log (4)}\right ) \, dx\\ &=2 \log (x)-5 \int \frac {6-10 x+15 x^2 \log (4)+4 x^3 \log (4)}{-8+30 x-25 x^2+25 x^3 \log (4)+5 x^4 \log (4)} \, dx\\ &=2 \log (x)-\log \left (8-30 x+25 x^2-25 x^3 \log (4)-5 x^4 \log (4)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 32, normalized size = 1.14 \begin {gather*} 2 \log (x)-\log \left (8-30 x+25 x^2-25 x^3 \log (4)-5 x^4 \log (4)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 31, normalized size = 1.11 \begin {gather*} -\log \left (-25 \, x^{2} + 10 \, {\left (x^{4} + 5 \, x^{3}\right )} \log \relax (2) + 30 \, x - 8\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 34, normalized size = 1.21 \begin {gather*} -\log \left ({\left | 10 \, x^{4} \log \relax (2) + 50 \, x^{3} \log \relax (2) - 25 \, x^{2} + 30 \, x - 8 \right |}\right ) + 2 \, \log \left ({\left | x \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 33, normalized size = 1.18
method | result | size |
default | \(2 \ln \relax (x )-\ln \left (10 x^{4} \ln \relax (2)+50 x^{3} \ln \relax (2)-25 x^{2}+30 x -8\right )\) | \(33\) |
norman | \(2 \ln \relax (x )-\ln \left (10 x^{4} \ln \relax (2)+50 x^{3} \ln \relax (2)-25 x^{2}+30 x -8\right )\) | \(33\) |
risch | \(2 \ln \left (-x \right )-\ln \left (10 x^{4} \ln \relax (2)+50 x^{3} \ln \relax (2)-25 x^{2}+30 x -8\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 32, normalized size = 1.14 \begin {gather*} -\log \left (10 \, x^{4} \log \relax (2) + 50 \, x^{3} \log \relax (2) - 25 \, x^{2} + 30 \, x - 8\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.40, size = 32, normalized size = 1.14 \begin {gather*} 2\,\ln \relax (x)-\ln \left (30\,\ln \relax (2)\,x^4+150\,\ln \relax (2)\,x^3-75\,x^2+90\,x-24\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.27, size = 37, normalized size = 1.32 \begin {gather*} 2 \log {\relax (x )} - \log {\left (x^{4} + 5 x^{3} - \frac {5 x^{2}}{2 \log {\relax (2 )}} + \frac {3 x}{\log {\relax (2 )}} - \frac {4}{5 \log {\relax (2 )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________