Optimal. Leaf size=30 \[ 3 \left (3+x+\left (5+(4+x)^2\right )^2\right ) \left (5+\frac {2}{5} (-2 x+\log (5-x))\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.25, antiderivative size = 98, normalized size of antiderivative = 3.27, number of steps used = 17, number of rules used = 7, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.117, Rules used = {6742, 1850, 2417, 2389, 2295, 2395, 43} \begin {gather*} -\frac {12 x^5}{5}-\frac {117 x^4}{5}+\frac {6}{5} x^4 \log (5-x)-\frac {72 x^3}{5}+\frac {96}{5} x^3 \log (5-x)+\frac {3906 x^2}{5}+\frac {636}{5} x^2 \log (5-x)+\frac {19947 x}{5}-\frac {2022}{5} (5-x) \log (5-x)+\frac {12774}{5} \log (5-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 1850
Rule 2295
Rule 2389
Rule 2395
Rule 2417
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {3 \left (32357+5697 x-3176 x^2-740 x^3+54 x^4+20 x^5\right )}{5 (-5+x)}+\frac {6}{5} \left (337+212 x+48 x^2+4 x^3\right ) \log (5-x)\right ) \, dx\\ &=-\left (\frac {3}{5} \int \frac {32357+5697 x-3176 x^2-740 x^3+54 x^4+20 x^5}{-5+x} \, dx\right )+\frac {6}{5} \int \left (337+212 x+48 x^2+4 x^3\right ) \log (5-x) \, dx\\ &=-\left (\frac {3}{5} \int \left (-9433-\frac {14808}{-5+x}-3026 x+30 x^2+154 x^3+20 x^4\right ) \, dx\right )+\frac {6}{5} \int \left (337 \log (5-x)+212 x \log (5-x)+48 x^2 \log (5-x)+4 x^3 \log (5-x)\right ) \, dx\\ &=\frac {28299 x}{5}+\frac {4539 x^2}{5}-6 x^3-\frac {231 x^4}{10}-\frac {12 x^5}{5}+\frac {44424}{5} \log (5-x)+\frac {24}{5} \int x^3 \log (5-x) \, dx+\frac {288}{5} \int x^2 \log (5-x) \, dx+\frac {1272}{5} \int x \log (5-x) \, dx+\frac {2022}{5} \int \log (5-x) \, dx\\ &=\frac {28299 x}{5}+\frac {4539 x^2}{5}-6 x^3-\frac {231 x^4}{10}-\frac {12 x^5}{5}+\frac {44424}{5} \log (5-x)+\frac {636}{5} x^2 \log (5-x)+\frac {96}{5} x^3 \log (5-x)+\frac {6}{5} x^4 \log (5-x)+\frac {6}{5} \int \frac {x^4}{5-x} \, dx+\frac {96}{5} \int \frac {x^3}{5-x} \, dx+\frac {636}{5} \int \frac {x^2}{5-x} \, dx-\frac {2022}{5} \operatorname {Subst}(\int \log (x) \, dx,x,5-x)\\ &=\frac {26277 x}{5}+\frac {4539 x^2}{5}-6 x^3-\frac {231 x^4}{10}-\frac {12 x^5}{5}+\frac {44424}{5} \log (5-x)-\frac {2022}{5} (5-x) \log (5-x)+\frac {636}{5} x^2 \log (5-x)+\frac {96}{5} x^3 \log (5-x)+\frac {6}{5} x^4 \log (5-x)+\frac {6}{5} \int \left (-125-\frac {625}{-5+x}-25 x-5 x^2-x^3\right ) \, dx+\frac {96}{5} \int \left (-25-\frac {125}{-5+x}-5 x-x^2\right ) \, dx+\frac {636}{5} \int \left (-5-\frac {25}{-5+x}-x\right ) \, dx\\ &=\frac {19947 x}{5}+\frac {3906 x^2}{5}-\frac {72 x^3}{5}-\frac {117 x^4}{5}-\frac {12 x^5}{5}+\frac {12774}{5} \log (5-x)-\frac {2022}{5} (5-x) \log (5-x)+\frac {636}{5} x^2 \log (5-x)+\frac {96}{5} x^3 \log (5-x)+\frac {6}{5} x^4 \log (5-x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.09, size = 78, normalized size = 2.60 \begin {gather*} -\frac {3}{5} \left (-6649 x-1302 x^2+24 x^3+39 x^4+4 x^5-888 \log (5-x)-674 x \log (5-x)-212 x^2 \log (5-x)-32 x^3 \log (5-x)-2 x^4 \log (5-x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 50, normalized size = 1.67 \begin {gather*} -\frac {12}{5} \, x^{5} - \frac {117}{5} \, x^{4} - \frac {72}{5} \, x^{3} + \frac {3906}{5} \, x^{2} + \frac {6}{5} \, {\left (x^{4} + 16 \, x^{3} + 106 \, x^{2} + 337 \, x + 444\right )} \log \left (-x + 5\right ) + \frac {19947}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 55, normalized size = 1.83 \begin {gather*} -\frac {12}{5} \, x^{5} - \frac {117}{5} \, x^{4} - \frac {72}{5} \, x^{3} + \frac {3906}{5} \, x^{2} + \frac {6}{5} \, {\left (x^{4} + 16 \, x^{3} + 106 \, x^{2} + 337 \, x\right )} \log \left (-x + 5\right ) + \frac {19947}{5} \, x + \frac {2664}{5} \, \log \left (x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.42, size = 57, normalized size = 1.90
method | result | size |
risch | \(\left (\frac {6}{5} x^{4}+\frac {96}{5} x^{3}+\frac {636}{5} x^{2}+\frac {2022}{5} x \right ) \ln \left (5-x \right )-\frac {12 x^{5}}{5}-\frac {117 x^{4}}{5}-\frac {72 x^{3}}{5}+\frac {3906 x^{2}}{5}+\frac {19947 x}{5}+\frac {2664 \ln \left (x -5\right )}{5}\) | \(57\) |
norman | \(\frac {2664 \ln \left (5-x \right )}{5}+\frac {19947 x}{5}+\frac {3906 x^{2}}{5}-\frac {72 x^{3}}{5}-\frac {117 x^{4}}{5}-\frac {12 x^{5}}{5}+\frac {2022 \ln \left (5-x \right ) x}{5}+\frac {636 \ln \left (5-x \right ) x^{2}}{5}+\frac {96 \ln \left (5-x \right ) x^{3}}{5}+\frac {6 \ln \left (5-x \right ) x^{4}}{5}\) | \(75\) |
derivativedivides | \(\frac {6 \ln \left (5-x \right ) \left (5-x \right )^{4}}{5}-\frac {417 \left (5-x \right )^{4}}{5}+\frac {12 \left (5-x \right )^{5}}{5}-\frac {216 \ln \left (5-x \right ) \left (5-x \right )^{3}}{5}+\frac {5412 \left (5-x \right )^{3}}{5}+\frac {2976 \ln \left (5-x \right ) \left (5-x \right )^{2}}{5}-\frac {29724 \left (5-x \right )^{2}}{5}-\frac {18582 \left (5-x \right ) \ln \left (5-x \right )}{5}+42393-\frac {42393 x}{5}+\frac {44424 \ln \left (5-x \right )}{5}\) | \(108\) |
default | \(\frac {6 \ln \left (5-x \right ) \left (5-x \right )^{4}}{5}-\frac {417 \left (5-x \right )^{4}}{5}+\frac {12 \left (5-x \right )^{5}}{5}-\frac {216 \ln \left (5-x \right ) \left (5-x \right )^{3}}{5}+\frac {5412 \left (5-x \right )^{3}}{5}+\frac {2976 \ln \left (5-x \right ) \left (5-x \right )^{2}}{5}-\frac {29724 \left (5-x \right )^{2}}{5}-\frac {18582 \left (5-x \right ) \ln \left (5-x \right )}{5}+42393-\frac {42393 x}{5}+\frac {44424 \ln \left (5-x \right )}{5}\) | \(108\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 146, normalized size = 4.87 \begin {gather*} -\frac {12}{5} \, x^{5} - \frac {117}{5} \, x^{4} - \frac {72}{5} \, x^{3} + \frac {3906}{5} \, x^{2} - 1011 \, \log \left (x - 5\right )^{2} + \frac {2}{5} \, {\left (3 \, x^{4} + 20 \, x^{3} + 150 \, x^{2} + 1500 \, x + 7500 \, \log \left (x - 5\right )\right )} \log \left (-x + 5\right ) + \frac {28}{5} \, {\left (2 \, x^{3} + 15 \, x^{2} + 150 \, x + 750 \, \log \left (x - 5\right )\right )} \log \left (-x + 5\right ) - \frac {84}{5} \, {\left (x^{2} + 10 \, x + 50 \, \log \left (x - 5\right )\right )} \log \left (-x + 5\right ) - \frac {4338}{5} \, {\left (x + 5 \, \log \left (x - 5\right )\right )} \log \left (-x + 5\right ) - 1011 \, \log \left (-x + 5\right )^{2} + \frac {19947}{5} \, x + \frac {2664}{5} \, \log \left (x - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 66, normalized size = 2.20 \begin {gather*} \frac {2664\,\ln \left (x-5\right )}{5}+x\,\left (\frac {2022\,\ln \left (5-x\right )}{5}+\frac {19947}{5}\right )+x^4\,\left (\frac {6\,\ln \left (5-x\right )}{5}-\frac {117}{5}\right )+x^3\,\left (\frac {96\,\ln \left (5-x\right )}{5}-\frac {72}{5}\right )+x^2\,\left (\frac {636\,\ln \left (5-x\right )}{5}+\frac {3906}{5}\right )-\frac {12\,x^5}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.17, size = 70, normalized size = 2.33 \begin {gather*} - \frac {12 x^{5}}{5} - \frac {117 x^{4}}{5} - \frac {72 x^{3}}{5} + \frac {3906 x^{2}}{5} + \frac {19947 x}{5} + \left (\frac {6 x^{4}}{5} + \frac {96 x^{3}}{5} + \frac {636 x^{2}}{5} + \frac {2022 x}{5}\right ) \log {\left (5 - x \right )} + \frac {2664 \log {\left (x - 5 \right )}}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________