Optimal. Leaf size=28 \[ 5 e^{e^3}-e^{\frac {e^2}{3 \left (x+4 x^2\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.33, antiderivative size = 20, normalized size of antiderivative = 0.71, number of steps used = 4, number of rules used = 4, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {1594, 27, 12, 6706} \begin {gather*} -e^{\frac {e^2}{3 \left (4 x^2+x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{2+\frac {e^2}{3 x+12 x^2}} (1+8 x)}{x^2 \left (3+24 x+48 x^2\right )} \, dx\\ &=\int \frac {e^{2+\frac {e^2}{3 x+12 x^2}} (1+8 x)}{3 x^2 (1+4 x)^2} \, dx\\ &=\frac {1}{3} \int \frac {e^{2+\frac {e^2}{3 x+12 x^2}} (1+8 x)}{x^2 (1+4 x)^2} \, dx\\ &=-e^{\frac {e^2}{3 \left (x+4 x^2\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 19, normalized size = 0.68 \begin {gather*} -e^{\frac {e^2}{3 x+12 x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 27, normalized size = 0.96 \begin {gather*} -e^{\left (\frac {24 \, x^{2} + 6 \, x + e^{2}}{3 \, {\left (4 \, x^{2} + x\right )}} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 44, normalized size = 1.57 \begin {gather*} -e^{\left (\frac {8 \, x^{2}}{4 \, x^{2} + x} + \frac {2 \, x}{4 \, x^{2} + x} + \frac {e^{2}}{3 \, {\left (4 \, x^{2} + x\right )}} - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 18, normalized size = 0.64
method | result | size |
gosper | \(-{\mathrm e}^{\frac {{\mathrm e}^{2}}{3 x \left (4 x +1\right )}}\) | \(18\) |
risch | \(-{\mathrm e}^{\frac {{\mathrm e}^{2}}{3 x \left (4 x +1\right )}}\) | \(18\) |
norman | \(\frac {-x \,{\mathrm e}^{\frac {{\mathrm e}^{2}}{12 x^{2}+3 x}}-4 x^{2} {\mathrm e}^{\frac {{\mathrm e}^{2}}{12 x^{2}+3 x}}}{x \left (4 x +1\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 22, normalized size = 0.79 \begin {gather*} -e^{\left (-\frac {4 \, e^{2}}{3 \, {\left (4 \, x + 1\right )}} + \frac {e^{2}}{3 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.63, size = 17, normalized size = 0.61 \begin {gather*} -{\mathrm {e}}^{\frac {{\mathrm {e}}^2}{12\,x^2+3\,x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 14, normalized size = 0.50 \begin {gather*} - e^{\frac {e^{2}}{12 x^{2} + 3 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________