Optimal. Leaf size=29 \[ e^{\frac {e^{2 x-\frac {3 x}{2+x \left (20+\log \left (e^{2 x}\right )\right )}}}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 22.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) \left (-2-39 x-124 x^2+371 x^3+78 x^4+4 x^5\right )}{2 x^2+40 x^3+204 x^4+40 x^5+2 x^6} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) \left (-2-39 x-124 x^2+371 x^3+78 x^4+4 x^5\right )}{2 x^2 \left (1+10 x+x^2\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) \left (-2-39 x-124 x^2+371 x^3+78 x^4+4 x^5\right )}{x^2 \left (1+10 x+x^2\right )^2} \, dx\\ &=\frac {1}{2} \int \left (-\frac {2 \exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x^2}+\frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x}+\frac {6 \exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) (5+x)}{\left (1+10 x+x^2\right )^2}+\frac {3 \exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) (10+x)}{1+10 x+x^2}\right ) \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x} \, dx+\frac {3}{2} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) (10+x)}{1+10 x+x^2} \, dx+3 \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) (5+x)}{\left (1+10 x+x^2\right )^2} \, dx-\int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x} \, dx+\frac {3}{2} \int \left (\frac {\left (1+\frac {5}{2 \sqrt {6}}\right ) \exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{10-4 \sqrt {6}+2 x}+\frac {\left (1-\frac {5}{2 \sqrt {6}}\right ) \exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{10+4 \sqrt {6}+2 x}\right ) \, dx+3 \int \left (\frac {5 \exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{\left (1+10 x+x^2\right )^2}+\frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) x}{\left (1+10 x+x^2\right )^2}\right ) \, dx-\int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x} \, dx+3 \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right ) x}{\left (1+10 x+x^2\right )^2} \, dx+15 \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{\left (1+10 x+x^2\right )^2} \, dx+\frac {1}{8} \left (12-5 \sqrt {6}\right ) \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{10+4 \sqrt {6}+2 x} \, dx+\frac {1}{8} \left (12+5 \sqrt {6}\right ) \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{10-4 \sqrt {6}+2 x} \, dx-\int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x} \, dx+3 \int \left (\frac {\left (-10+4 \sqrt {6}\right ) e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{48 \left (-10+4 \sqrt {6}-2 x\right )^2}-\frac {5 e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{96 \sqrt {6} \left (-10+4 \sqrt {6}-2 x\right )}+\frac {\left (-10-4 \sqrt {6}\right ) e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{48 \left (10+4 \sqrt {6}+2 x\right )^2}-\frac {5 e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{96 \sqrt {6} \left (10+4 \sqrt {6}+2 x\right )}\right ) \, dx+15 \int \left (\frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{24 \left (-10+4 \sqrt {6}-2 x\right )^2}+\frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{96 \sqrt {6} \left (-10+4 \sqrt {6}-2 x\right )}+\frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{24 \left (10+4 \sqrt {6}+2 x\right )^2}+\frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{96 \sqrt {6} \left (10+4 \sqrt {6}+2 x\right )}\right ) \, dx+\frac {1}{8} \left (12-5 \sqrt {6}\right ) \int \frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{10+4 \sqrt {6}+2 x} \, dx+\frac {1}{8} \left (12+5 \sqrt {6}\right ) \int \frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{10-4 \sqrt {6}+2 x} \, dx-\int \frac {e^{\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x^2} \, dx\\ &=\frac {1}{2} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x} \, dx+\frac {5}{8} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{\left (-10+4 \sqrt {6}-2 x\right )^2} \, dx+\frac {5}{8} \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{\left (10+4 \sqrt {6}+2 x\right )^2} \, dx+\frac {1}{8} \left (12-5 \sqrt {6}\right ) \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{10+4 \sqrt {6}+2 x} \, dx+\frac {1}{8} \left (-5-2 \sqrt {6}\right ) \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{\left (10+4 \sqrt {6}+2 x\right )^2} \, dx+\frac {1}{8} \left (-5+2 \sqrt {6}\right ) \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{\left (-10+4 \sqrt {6}-2 x\right )^2} \, dx+\frac {1}{8} \left (12+5 \sqrt {6}\right ) \int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{10-4 \sqrt {6}+2 x} \, dx-\int \frac {\exp \left (\frac {e^{\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}}}{x}+\frac {x+40 x^2+4 x^3}{2+20 x+2 x^2}\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 27, normalized size = 0.93 \begin {gather*} e^{\frac {e^{2 x-\frac {3 x}{2 \left (1+10 x+x^2\right )}}}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.47, size = 89, normalized size = 3.07 \begin {gather*} e^{\left (\frac {4 \, x^{4} + 40 \, x^{3} + x^{2} + 2 \, {\left (x^{2} + 10 \, x + 1\right )} e^{\left (\frac {4 \, x^{3} + 40 \, x^{2} + x}{2 \, {\left (x^{2} + 10 \, x + 1\right )}}\right )}}{2 \, {\left (x^{3} + 10 \, x^{2} + x\right )}} - \frac {4 \, x^{3} + 40 \, x^{2} + x}{2 \, {\left (x^{2} + 10 \, x + 1\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, x^{5} + 78 \, x^{4} + 371 \, x^{3} - 124 \, x^{2} - 39 \, x - 2\right )} e^{\left (\frac {4 \, x^{3} + 40 \, x^{2} + x}{2 \, {\left (x^{2} + 10 \, x + 1\right )}} + \frac {e^{\left (\frac {4 \, x^{3} + 40 \, x^{2} + x}{2 \, {\left (x^{2} + 10 \, x + 1\right )}}\right )}}{x}\right )}}{2 \, {\left (x^{6} + 20 \, x^{5} + 102 \, x^{4} + 20 \, x^{3} + x^{2}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 30, normalized size = 1.03
method | result | size |
risch | \({\mathrm e}^{\frac {{\mathrm e}^{\frac {x \left (4 x^{2}+40 x +1\right )}{2 x^{2}+20 x +2}}}{x}}\) | \(30\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {{\mathrm e}^{\frac {4 x^{3}+40 x^{2}+x}{2 x^{2}+20 x +2}}}{x}}+x^{3} {\mathrm e}^{\frac {{\mathrm e}^{\frac {4 x^{3}+40 x^{2}+x}{2 x^{2}+20 x +2}}}{x}}+10 x^{2} {\mathrm e}^{\frac {{\mathrm e}^{\frac {4 x^{3}+40 x^{2}+x}{2 x^{2}+20 x +2}}}{x}}}{x \left (x^{2}+10 x +1\right )}\) | \(120\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {1}{2} \, \int \frac {{\left (4 \, x^{5} + 78 \, x^{4} + 371 \, x^{3} - 124 \, x^{2} - 39 \, x - 2\right )} e^{\left (\frac {4 \, x^{3} + 40 \, x^{2} + x}{2 \, {\left (x^{2} + 10 \, x + 1\right )}} + \frac {e^{\left (\frac {4 \, x^{3} + 40 \, x^{2} + x}{2 \, {\left (x^{2} + 10 \, x + 1\right )}}\right )}}{x}\right )}}{x^{6} + 20 \, x^{5} + 102 \, x^{4} + 20 \, x^{3} + x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.72, size = 52, normalized size = 1.79 \begin {gather*} {\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {x}{2\,x^2+20\,x+2}}\,{\mathrm {e}}^{\frac {2\,x^3}{x^2+10\,x+1}}\,{\mathrm {e}}^{\frac {20\,x^2}{x^2+10\,x+1}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.77, size = 26, normalized size = 0.90 \begin {gather*} e^{\frac {e^{\frac {4 x^{3} + 40 x^{2} + x}{2 x^{2} + 20 x + 2}}}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________