Optimal. Leaf size=21 \[ x^2 \left (-5-\frac {1+x-\log (3)}{\log (x)}\right )^2 \]
________________________________________________________________________________________
Rubi [C] time = 0.80, antiderivative size = 193, normalized size of antiderivative = 9.19, number of steps used = 38, number of rules used = 10, integrand size = 100, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6, 6688, 12, 6742, 27, 2353, 2306, 2309, 2178, 2356} \begin {gather*} -4 \left (4-\log ^2(3)-\log (27)\right ) \text {Ei}(2 \log (x))+30 \text {Ei}(3 \log (x))-6 (2+\log (27)) \text {Ei}(3 \log (x))-(2-\log (9))^2 \text {Ei}(2 \log (x))+10 (2-\log (9)) \text {Ei}(2 \log (x))-9 (2-\log (9)) \text {Ei}(3 \log (x))+\frac {x^4}{\log ^2(x)}+\frac {x^3 (2-\log (9))}{\log ^2(x)}+\frac {2 x^3 (2+\log (27))}{\log (x)}+\frac {3 x^3 (2-\log (9))}{\log (x)}+25 x^2+\frac {2 x^2 \left (4-\log ^2(3)-\log (27)\right )}{\log (x)}+\frac {x^2 (2-\log (9))^2}{4 \log ^2(x)}+\frac {x^2 (2-\log (9))^2}{2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 27
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 2356
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4 x^2-2 x^3+\left (4 x+4 x^2\right ) \log (3)+x \left (-2-2 \log ^2(3)\right )+\left (-8 x-4 x^2+4 x^3+\left (6 x-6 x^2\right ) \log (3)+2 x \log ^2(3)\right ) \log (x)+\left (20 x+30 x^2-20 x \log (3)\right ) \log ^2(x)+50 x \log ^3(x)}{\log ^3(x)} \, dx\\ &=\int \frac {2 x \left (-1-x^2-\log ^2(3)+x (-2+\log (9))+\log (9)+\left (-4+2 x^2+\log ^2(3)+\log (27)-x (2+\log (27))\right ) \log (x)+5 (2+3 x-\log (9)) \log ^2(x)+25 \log ^3(x)\right )}{\log ^3(x)} \, dx\\ &=2 \int \frac {x \left (-1-x^2-\log ^2(3)+x (-2+\log (9))+\log (9)+\left (-4+2 x^2+\log ^2(3)+\log (27)-x (2+\log (27))\right ) \log (x)+5 (2+3 x-\log (9)) \log ^2(x)+25 \log ^3(x)\right )}{\log ^3(x)} \, dx\\ &=2 \int \left (25 x+\frac {x \left (-1-x^2-\log ^2(3)-x (2-\log (9))+\log (9)\right )}{\log ^3(x)}+\frac {x \left (-4+2 x^2+\log ^2(3)+\log (27)-x (2+\log (27))\right )}{\log ^2(x)}+\frac {5 x (2+3 x-\log (9))}{\log (x)}\right ) \, dx\\ &=25 x^2+2 \int \frac {x \left (-1-x^2-\log ^2(3)-x (2-\log (9))+\log (9)\right )}{\log ^3(x)} \, dx+2 \int \frac {x \left (-4+2 x^2+\log ^2(3)+\log (27)-x (2+\log (27))\right )}{\log ^2(x)} \, dx+10 \int \frac {x (2+3 x-\log (9))}{\log (x)} \, dx\\ &=25 x^2+2 \int \left (\frac {2 x^3}{\log ^2(x)}+\frac {x^2 (-2-\log (27))}{\log ^2(x)}+\frac {x \left (-4+\log ^2(3)+\log (27)\right )}{\log ^2(x)}\right ) \, dx+2 \int -\frac {x (2+2 x-\log (9))^2}{4 \log ^3(x)} \, dx+10 \int \left (\frac {3 x^2}{\log (x)}-\frac {x (-2+\log (9))}{\log (x)}\right ) \, dx\\ &=25 x^2-\frac {1}{2} \int \frac {x (2+2 x-\log (9))^2}{\log ^3(x)} \, dx+4 \int \frac {x^3}{\log ^2(x)} \, dx+30 \int \frac {x^2}{\log (x)} \, dx+(10 (2-\log (9))) \int \frac {x}{\log (x)} \, dx-\left (2 \left (4-\log ^2(3)-\log (27)\right )\right ) \int \frac {x}{\log ^2(x)} \, dx-(2 (2+\log (27))) \int \frac {x^2}{\log ^2(x)} \, dx\\ &=25 x^2-\frac {4 x^4}{\log (x)}+\frac {2 x^2 \left (4-\log ^2(3)-\log (27)\right )}{\log (x)}+\frac {2 x^3 (2+\log (27))}{\log (x)}-\frac {1}{2} \int \left (\frac {4 x^3}{\log ^3(x)}-\frac {4 x^2 (-2+\log (9))}{\log ^3(x)}+\frac {x (-2+\log (9))^2}{\log ^3(x)}\right ) \, dx+16 \int \frac {x^3}{\log (x)} \, dx+30 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )+(10 (2-\log (9))) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-\left (4 \left (4-\log ^2(3)-\log (27)\right )\right ) \int \frac {x}{\log (x)} \, dx-(6 (2+\log (27))) \int \frac {x^2}{\log (x)} \, dx\\ &=25 x^2+30 \text {Ei}(3 \log (x))+10 \text {Ei}(2 \log (x)) (2-\log (9))-\frac {4 x^4}{\log (x)}+\frac {2 x^2 \left (4-\log ^2(3)-\log (27)\right )}{\log (x)}+\frac {2 x^3 (2+\log (27))}{\log (x)}-2 \int \frac {x^3}{\log ^3(x)} \, dx+16 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )-(2 (2-\log (9))) \int \frac {x^2}{\log ^3(x)} \, dx-\frac {1}{2} (2-\log (9))^2 \int \frac {x}{\log ^3(x)} \, dx-\left (4 \left (4-\log ^2(3)-\log (27)\right )\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-(6 (2+\log (27))) \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=25 x^2+30 \text {Ei}(3 \log (x))+16 \text {Ei}(4 \log (x))+10 \text {Ei}(2 \log (x)) (2-\log (9))-4 \text {Ei}(2 \log (x)) \left (4-\log ^2(3)-\log (27)\right )-6 \text {Ei}(3 \log (x)) (2+\log (27))+\frac {x^4}{\log ^2(x)}+\frac {x^3 (2-\log (9))}{\log ^2(x)}+\frac {x^2 (2-\log (9))^2}{4 \log ^2(x)}-\frac {4 x^4}{\log (x)}+\frac {2 x^2 \left (4-\log ^2(3)-\log (27)\right )}{\log (x)}+\frac {2 x^3 (2+\log (27))}{\log (x)}-4 \int \frac {x^3}{\log ^2(x)} \, dx-(3 (2-\log (9))) \int \frac {x^2}{\log ^2(x)} \, dx-\frac {1}{2} (2-\log (9))^2 \int \frac {x}{\log ^2(x)} \, dx\\ &=25 x^2+30 \text {Ei}(3 \log (x))+16 \text {Ei}(4 \log (x))+10 \text {Ei}(2 \log (x)) (2-\log (9))-4 \text {Ei}(2 \log (x)) \left (4-\log ^2(3)-\log (27)\right )-6 \text {Ei}(3 \log (x)) (2+\log (27))+\frac {x^4}{\log ^2(x)}+\frac {x^3 (2-\log (9))}{\log ^2(x)}+\frac {x^2 (2-\log (9))^2}{4 \log ^2(x)}+\frac {3 x^3 (2-\log (9))}{\log (x)}+\frac {x^2 (2-\log (9))^2}{2 \log (x)}+\frac {2 x^2 \left (4-\log ^2(3)-\log (27)\right )}{\log (x)}+\frac {2 x^3 (2+\log (27))}{\log (x)}-16 \int \frac {x^3}{\log (x)} \, dx-(9 (2-\log (9))) \int \frac {x^2}{\log (x)} \, dx-(2-\log (9))^2 \int \frac {x}{\log (x)} \, dx\\ &=25 x^2+30 \text {Ei}(3 \log (x))+16 \text {Ei}(4 \log (x))+10 \text {Ei}(2 \log (x)) (2-\log (9))-4 \text {Ei}(2 \log (x)) \left (4-\log ^2(3)-\log (27)\right )-6 \text {Ei}(3 \log (x)) (2+\log (27))+\frac {x^4}{\log ^2(x)}+\frac {x^3 (2-\log (9))}{\log ^2(x)}+\frac {x^2 (2-\log (9))^2}{4 \log ^2(x)}+\frac {3 x^3 (2-\log (9))}{\log (x)}+\frac {x^2 (2-\log (9))^2}{2 \log (x)}+\frac {2 x^2 \left (4-\log ^2(3)-\log (27)\right )}{\log (x)}+\frac {2 x^3 (2+\log (27))}{\log (x)}-16 \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )-(9 (2-\log (9))) \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )-(2-\log (9))^2 \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )\\ &=25 x^2+30 \text {Ei}(3 \log (x))+10 \text {Ei}(2 \log (x)) (2-\log (9))-9 \text {Ei}(3 \log (x)) (2-\log (9))-\text {Ei}(2 \log (x)) (2-\log (9))^2-4 \text {Ei}(2 \log (x)) \left (4-\log ^2(3)-\log (27)\right )-6 \text {Ei}(3 \log (x)) (2+\log (27))+\frac {x^4}{\log ^2(x)}+\frac {x^3 (2-\log (9))}{\log ^2(x)}+\frac {x^2 (2-\log (9))^2}{4 \log ^2(x)}+\frac {3 x^3 (2-\log (9))}{\log (x)}+\frac {x^2 (2-\log (9))^2}{2 \log (x)}+\frac {2 x^2 \left (4-\log ^2(3)-\log (27)\right )}{\log (x)}+\frac {2 x^3 (2+\log (27))}{\log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.28, size = 46, normalized size = 2.19 \begin {gather*} \frac {x^2 \left (1+x^2+\log ^2(3)-x (-2+\log (9))-\log (9)+(10+10 x-\log (59049)) \log (x)+25 \log ^2(x)\right )}{\log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 63, normalized size = 3.00 \begin {gather*} \frac {x^{4} + x^{2} \log \relax (3)^{2} + 25 \, x^{2} \log \relax (x)^{2} + 2 \, x^{3} + x^{2} - 2 \, {\left (x^{3} + x^{2}\right )} \log \relax (3) + 10 \, {\left (x^{3} - x^{2} \log \relax (3) + x^{2}\right )} \log \relax (x)}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 94, normalized size = 4.48 \begin {gather*} 25 \, x^{2} + \frac {x^{4}}{\log \relax (x)^{2}} - \frac {2 \, x^{3} \log \relax (3)}{\log \relax (x)^{2}} + \frac {x^{2} \log \relax (3)^{2}}{\log \relax (x)^{2}} + \frac {10 \, x^{3}}{\log \relax (x)} - \frac {10 \, x^{2} \log \relax (3)}{\log \relax (x)} + \frac {2 \, x^{3}}{\log \relax (x)^{2}} - \frac {2 \, x^{2} \log \relax (3)}{\log \relax (x)^{2}} + \frac {10 \, x^{2}}{\log \relax (x)} + \frac {x^{2}}{\log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 51, normalized size = 2.43
method | result | size |
risch | \(25 x^{2}+\frac {x^{2} \left (\ln \relax (3)^{2}-2 x \ln \relax (3)-10 \ln \relax (3) \ln \relax (x )+x^{2}+10 x \ln \relax (x )-2 \ln \relax (3)+2 x +10 \ln \relax (x )+1\right )}{\ln \relax (x )^{2}}\) | \(51\) |
norman | \(\frac {x^{4}+\left (-2 \ln \relax (3)+2\right ) x^{3}+\left (\ln \relax (3)^{2}-2 \ln \relax (3)+1\right ) x^{2}+\left (-10 \ln \relax (3)+10\right ) x^{2} \ln \relax (x )+25 x^{2} \ln \relax (x )^{2}+10 x^{3} \ln \relax (x )}{\ln \relax (x )^{2}}\) | \(62\) |
default | \(\frac {10 x^{2}}{\ln \relax (x )}+25 x^{2}+\frac {x^{2}}{\ln \relax (x )^{2}}+\frac {10 x^{3}}{\ln \relax (x )}+\frac {x^{4}}{\ln \relax (x )^{2}}+\frac {2 x^{3}}{\ln \relax (x )^{2}}+20 \ln \relax (3) \expIntegralEi \left (1, -2 \ln \relax (x )\right )+2 \ln \relax (3)^{2} \left (-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )-6 \ln \relax (3) \left (-\frac {x^{3}}{\ln \relax (x )}-3 \expIntegralEi \left (1, -3 \ln \relax (x )\right )\right )+6 \ln \relax (3) \left (-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )-2 \ln \relax (3)^{2} \left (-\frac {x^{2}}{2 \ln \relax (x )^{2}}-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )+4 \ln \relax (3) \left (-\frac {x^{3}}{2 \ln \relax (x )^{2}}-\frac {3 x^{3}}{2 \ln \relax (x )}-\frac {9 \expIntegralEi \left (1, -3 \ln \relax (x )\right )}{2}\right )+4 \ln \relax (3) \left (-\frac {x^{2}}{2 \ln \relax (x )^{2}}-\frac {x^{2}}{\ln \relax (x )}-2 \expIntegralEi \left (1, -2 \ln \relax (x )\right )\right )\) | \(223\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.41, size = 141, normalized size = 6.71 \begin {gather*} 4 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) \log \relax (3)^{2} + 8 \, \Gamma \left (-2, -2 \, \log \relax (x)\right ) \log \relax (3)^{2} + 25 \, x^{2} - 20 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) \log \relax (3) + 12 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) \log \relax (3) - 18 \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) \log \relax (3) - 16 \, \Gamma \left (-2, -2 \, \log \relax (x)\right ) \log \relax (3) - 36 \, \Gamma \left (-2, -3 \, \log \relax (x)\right ) \log \relax (3) + 30 \, {\rm Ei}\left (3 \, \log \relax (x)\right ) + 20 \, {\rm Ei}\left (2 \, \log \relax (x)\right ) - 16 \, \Gamma \left (-1, -2 \, \log \relax (x)\right ) - 12 \, \Gamma \left (-1, -3 \, \log \relax (x)\right ) + 16 \, \Gamma \left (-1, -4 \, \log \relax (x)\right ) + 8 \, \Gamma \left (-2, -2 \, \log \relax (x)\right ) + 36 \, \Gamma \left (-2, -3 \, \log \relax (x)\right ) + 32 \, \Gamma \left (-2, -4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.45, size = 63, normalized size = 3.00 \begin {gather*} 25\,x^2-\frac {x^4\,\left (\ln \relax (9)-2\right )-x^3\,\left ({\ln \relax (3)}^2-\ln \relax (9)+1\right )+\ln \relax (x)\,\left (x^3\,\left (10\,\ln \relax (3)-10\right )-10\,x^4\right )-x^5}{x\,{\ln \relax (x)}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 68, normalized size = 3.24 \begin {gather*} 25 x^{2} + \frac {x^{4} - 2 x^{3} \log {\relax (3 )} + 2 x^{3} - 2 x^{2} \log {\relax (3 )} + x^{2} + x^{2} \log {\relax (3 )}^{2} + \left (10 x^{3} - 10 x^{2} \log {\relax (3 )} + 10 x^{2}\right ) \log {\relax (x )}}{\log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________