Optimal. Leaf size=26 \[ \frac {x-\frac {x^2 (4+x)}{16 \log \left (\frac {e^4}{4}\right )}}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.00, antiderivative size = 17, normalized size of antiderivative = 0.65, number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {9} \begin {gather*} -\frac {(x+2)^2}{16 (4-\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 9
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {(2+x)^2}{16 (4-\log (4))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 21, normalized size = 0.81 \begin {gather*} \frac {2 x+\frac {x^2}{2}}{8 (-4+\log (4))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 15, normalized size = 0.58 \begin {gather*} \frac {x^{2} + 4 \, x}{32 \, {\left (\log \relax (2) - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 16, normalized size = 0.62 \begin {gather*} -\frac {x^{2} + 4 \, x}{16 \, \log \left (\frac {1}{4} \, e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 14, normalized size = 0.54
method | result | size |
gosper | \(-\frac {\left (4+x \right ) x}{16 \ln \left (\frac {{\mathrm e}^{4}}{4}\right )}\) | \(14\) |
default | \(\frac {-\frac {1}{2} x^{2}-2 x}{8 \ln \left (\frac {{\mathrm e}^{4}}{4}\right )}\) | \(19\) |
norman | \(\frac {x}{8 \ln \relax (2)-16}+\frac {x^{2}}{32 \ln \relax (2)-64}\) | \(22\) |
risch | \(-\frac {x^{2}}{16 \left (4-2 \ln \relax (2)\right )}-\frac {x}{4 \left (4-2 \ln \relax (2)\right )}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 16, normalized size = 0.62 \begin {gather*} -\frac {x^{2} + 4 \, x}{16 \, \log \left (\frac {1}{4} \, e^{4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 15, normalized size = 0.58 \begin {gather*} \frac {4\,{\left (\frac {x}{8}+\frac {1}{4}\right )}^2}{\ln \relax (4)-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.06, size = 17, normalized size = 0.65 \begin {gather*} \frac {x^{2}}{-64 + 32 \log {\relax (2 )}} + \frac {x}{-16 + 8 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________