Optimal. Leaf size=29 \[ x \left (3+x+x^2 \left (1+\frac {10 x}{x-\frac {x}{e}-x^2}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 41, normalized size of antiderivative = 1.41, number of steps used = 4, number of rules used = 3, integrand size = 75, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.040, Rules used = {1986, 27, 1850} \begin {gather*} x^3-9 x^2+\frac {(10-7 e) x}{e}+\frac {10 (1-e)^3}{e^2 (e x-e+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rule 1986
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+2 x+3 x^2+e \left (-6+2 x-32 x^2+6 x^3\right )+e^2 \left (3-4 x+32 x^2-24 x^3+3 x^4\right )}{(-1+e)^2+2 (1-e) e x+e^2 x^2} \, dx\\ &=\int \frac {3+2 x+3 x^2+e \left (-6+2 x-32 x^2+6 x^3\right )+e^2 \left (3-4 x+32 x^2-24 x^3+3 x^4\right )}{(1-e+e x)^2} \, dx\\ &=\int \left (\frac {10-7 e}{e}-18 x+3 x^2+\frac {10 (-1+e)^3}{e (1-e+e x)^2}\right ) \, dx\\ &=\frac {(10-7 e) x}{e}-9 x^2+x^3+\frac {10 (1-e)^3}{e^2 (1-e+e x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 38, normalized size = 1.31 \begin {gather*} -\frac {10 (-1+e)^3}{e^2 (1+e (-1+x))}+\frac {(10-7 e) x}{e}-9 x^2+x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 56, normalized size = 1.93 \begin {gather*} \frac {{\left (x^{4} - 10 \, x^{3} + 2 \, x^{2} + 7 \, x - 10\right )} e^{3} + {\left (x^{3} + x^{2} - 17 \, x + 30\right )} e^{2} + 10 \, {\left (x - 3\right )} e + 10}{{\left (x - 1\right )} e^{3} + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.53, size = 57, normalized size = 1.97
method | result | size |
norman | \(\frac {x^{4} {\mathrm e}+\left (-10 \,{\mathrm e}+1\right ) x^{3}+\left (2 \,{\mathrm e}+1\right ) x^{2}-3 \left ({\mathrm e}^{2}-2 \,{\mathrm e}+1\right ) {\mathrm e}^{-1}}{x \,{\mathrm e}-{\mathrm e}+1}\) | \(57\) |
gosper | \(\frac {\left (x^{4} {\mathrm e}^{2}-10 x^{3} {\mathrm e}^{2}+2 x^{2} {\mathrm e}^{2}+x^{3} {\mathrm e}+x^{2} {\mathrm e}-3 \,{\mathrm e}^{2}+6 \,{\mathrm e}-3\right ) {\mathrm e}^{-1}}{x \,{\mathrm e}-{\mathrm e}+1}\) | \(68\) |
risch | \({\mathrm e} \,{\mathrm e}^{-1} x^{3}-9 \,{\mathrm e} \,{\mathrm e}^{-1} x^{2}-7 \,{\mathrm e} \,{\mathrm e}^{-1} x +10 \,{\mathrm e}^{-1} x -\frac {10 \,{\mathrm e}^{-2} {\mathrm e}^{3}}{x \,{\mathrm e}-{\mathrm e}+1}+\frac {30 \,{\mathrm e}^{-2} {\mathrm e}^{2}}{x \,{\mathrm e}-{\mathrm e}+1}-\frac {30 \,{\mathrm e}^{-2} {\mathrm e}}{x \,{\mathrm e}-{\mathrm e}+1}+\frac {10 \,{\mathrm e}^{-2}}{x \,{\mathrm e}-{\mathrm e}+1}\) | \(101\) |
meijerg | \(-3 \,{\mathrm e}^{-3} \left ({\mathrm e}-1\right )^{3} \left (-\frac {x \,{\mathrm e} \left (-\frac {5 x^{3} {\mathrm e}^{3}}{\left ({\mathrm e}-1\right )^{3}}-\frac {10 x^{2} {\mathrm e}^{2}}{\left ({\mathrm e}-1\right )^{2}}-\frac {30 x \,{\mathrm e}}{{\mathrm e}-1}+60\right )}{15 \left ({\mathrm e}-1\right ) \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )}-4 \ln \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )\right )+\left (-24 \,{\mathrm e}^{2}+6 \,{\mathrm e}\right ) \left ({\mathrm e}-1\right )^{2} {\mathrm e}^{-4} \left (\frac {x \,{\mathrm e} \left (-\frac {2 x^{2} {\mathrm e}^{2}}{\left ({\mathrm e}-1\right )^{2}}-\frac {6 x \,{\mathrm e}}{{\mathrm e}-1}+12\right )}{4 \left ({\mathrm e}-1\right ) \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )}+3 \ln \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )\right )-\left (32 \,{\mathrm e}^{2}-32 \,{\mathrm e}+3\right ) {\mathrm e}^{-3} \left ({\mathrm e}-1\right ) \left (-\frac {x \,{\mathrm e} \left (-\frac {3 x \,{\mathrm e}}{{\mathrm e}-1}+6\right )}{3 \left ({\mathrm e}-1\right ) \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )}-2 \ln \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )\right )+\left (-4 \,{\mathrm e}^{2}+2 \,{\mathrm e}+2\right ) {\mathrm e}^{-2} \left (\frac {x \,{\mathrm e}}{\left ({\mathrm e}-1\right ) \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )}+\ln \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )\right )+\frac {3 \,{\mathrm e}^{2} x}{\left ({\mathrm e}-1\right )^{2} \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )}-\frac {6 \,{\mathrm e} x}{\left ({\mathrm e}-1\right )^{2} \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )}+\frac {3 x}{\left ({\mathrm e}-1\right )^{2} \left (1-\frac {x \,{\mathrm e}}{{\mathrm e}-1}\right )}\) | \(384\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 54, normalized size = 1.86 \begin {gather*} {\left (x^{3} e - 9 \, x^{2} e - x {\left (7 \, e - 10\right )}\right )} e^{\left (-1\right )} - \frac {10 \, {\left (e^{3} - 3 \, e^{2} + 3 \, e - 1\right )}}{x e^{3} - e^{3} + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.62, size = 109, normalized size = 3.76 \begin {gather*} x^2\,\left (3\,{\mathrm {e}}^{-1}\,\left (\mathrm {e}-1\right )-3\,{\mathrm {e}}^{-1}\,\left (4\,\mathrm {e}-1\right )\right )+x\,\left ({\mathrm {e}}^{-2}\,\left (32\,{\mathrm {e}}^2-32\,\mathrm {e}+3\right )-3\,{\mathrm {e}}^{-2}\,{\left (\mathrm {e}-1\right )}^2+2\,{\mathrm {e}}^{-1}\,\left (\mathrm {e}-1\right )\,\left (6\,{\mathrm {e}}^{-1}\,\left (\mathrm {e}-1\right )-6\,{\mathrm {e}}^{-1}\,\left (4\,\mathrm {e}-1\right )\right )\right )+x^3-\frac {10\,{\mathrm {e}}^{-1}\,\left (3\,\mathrm {e}-3\,{\mathrm {e}}^2+{\mathrm {e}}^3-1\right )}{\mathrm {e}-{\mathrm {e}}^2+x\,{\mathrm {e}}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 44, normalized size = 1.52 \begin {gather*} x^{3} - 9 x^{2} + x \left (-7 + \frac {10}{e}\right ) + \frac {- 10 e^{3} - 30 e + 10 + 30 e^{2}}{x e^{3} - e^{3} + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________