Optimal. Leaf size=27 \[ 5 x^2 \left (3-\left (e^{3-x+\frac {13+x}{5}}+x\right )^2\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 43, normalized size of antiderivative = 1.59, number of steps used = 19, number of rules used = 4, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.075, Rules used = {1593, 2196, 2176, 2194} \begin {gather*} -5 x^4-10 e^{\frac {4 (7-x)}{5}} x^3-5 e^{\frac {8 (7-x)}{5}} x^2+15 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=15 x^2-5 x^4+\int e^{\frac {2}{5} (28-4 x)} \left (-10 x+8 x^2\right ) \, dx+\int e^{\frac {1}{5} (28-4 x)} \left (-30 x^2+8 x^3\right ) \, dx\\ &=15 x^2-5 x^4+\int e^{\frac {1}{5} (28-4 x)} x^2 (-30+8 x) \, dx+\int e^{\frac {2}{5} (28-4 x)} x (-10+8 x) \, dx\\ &=15 x^2-5 x^4+\int \left (-10 e^{\frac {2}{5} (28-4 x)} x+8 e^{\frac {2}{5} (28-4 x)} x^2\right ) \, dx+\int \left (-30 e^{\frac {1}{5} (28-4 x)} x^2+8 e^{\frac {1}{5} (28-4 x)} x^3\right ) \, dx\\ &=15 x^2-5 x^4+8 \int e^{\frac {2}{5} (28-4 x)} x^2 \, dx+8 \int e^{\frac {1}{5} (28-4 x)} x^3 \, dx-10 \int e^{\frac {2}{5} (28-4 x)} x \, dx-30 \int e^{\frac {1}{5} (28-4 x)} x^2 \, dx\\ &=\frac {25}{4} e^{\frac {8 (7-x)}{5}} x+15 x^2+\frac {75}{2} e^{\frac {4 (7-x)}{5}} x^2-5 e^{\frac {8 (7-x)}{5}} x^2-10 e^{\frac {4 (7-x)}{5}} x^3-5 x^4-\frac {25}{4} \int e^{\frac {2}{5} (28-4 x)} \, dx+10 \int e^{\frac {2}{5} (28-4 x)} x \, dx+30 \int e^{\frac {1}{5} (28-4 x)} x^2 \, dx-75 \int e^{\frac {1}{5} (28-4 x)} x \, dx\\ &=\frac {125}{32} e^{\frac {8 (7-x)}{5}}+\frac {375}{4} e^{\frac {4 (7-x)}{5}} x+15 x^2-5 e^{\frac {8 (7-x)}{5}} x^2-10 e^{\frac {4 (7-x)}{5}} x^3-5 x^4+\frac {25}{4} \int e^{\frac {2}{5} (28-4 x)} \, dx+75 \int e^{\frac {1}{5} (28-4 x)} x \, dx-\frac {375}{4} \int e^{\frac {1}{5} (28-4 x)} \, dx\\ &=\frac {1875}{16} e^{\frac {4 (7-x)}{5}}+15 x^2-5 e^{\frac {8 (7-x)}{5}} x^2-10 e^{\frac {4 (7-x)}{5}} x^3-5 x^4+\frac {375}{4} \int e^{\frac {1}{5} (28-4 x)} \, dx\\ &=15 x^2-5 e^{\frac {8 (7-x)}{5}} x^2-10 e^{\frac {4 (7-x)}{5}} x^3-5 x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 43, normalized size = 1.59 \begin {gather*} -5 e^{-8 x/5} x^2 \left (e^{56/5}+2 e^{\frac {4 (7+x)}{5}} x+e^{8 x/5} \left (-3+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 33, normalized size = 1.22 \begin {gather*} -5 \, x^{4} - 10 \, x^{3} e^{\left (-\frac {4}{5} \, x + \frac {28}{5}\right )} - 5 \, x^{2} e^{\left (-\frac {8}{5} \, x + \frac {56}{5}\right )} + 15 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 33, normalized size = 1.22 \begin {gather*} -5 \, x^{4} - 10 \, x^{3} e^{\left (-\frac {4}{5} \, x + \frac {28}{5}\right )} - 5 \, x^{2} e^{\left (-\frac {8}{5} \, x + \frac {56}{5}\right )} + 15 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 34, normalized size = 1.26
method | result | size |
risch | \(15 x^{2}-5 x^{4}-10 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} x^{3}-5 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}} x^{2}\) | \(34\) |
norman | \(15 x^{2}-5 x^{4}-10 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} x^{3}-5 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}} x^{2}\) | \(36\) |
default | \(-245 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}}+\frac {175 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )}{2}-\frac {125 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )^{2}}{16}+\frac {3675 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )}{2}-3430 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}}-\frac {2625 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )^{2}}{8}+\frac {625 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )^{3}}{32}+15 x^{2}-5 x^{4}\) | \(105\) |
derivativedivides | \(210 x -1470+\frac {375 \left (-\frac {4 x}{5}+\frac {28}{5}\right )^{2}}{16}-5 x^{4}+\frac {3675 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )}{2}-3430 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}}-\frac {2625 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )^{2}}{8}+\frac {625 \,{\mathrm e}^{-\frac {4 x}{5}+\frac {28}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )^{3}}{32}-245 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}}+\frac {175 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )}{2}-\frac {125 \,{\mathrm e}^{-\frac {8 x}{5}+\frac {56}{5}} \left (-\frac {4 x}{5}+\frac {28}{5}\right )^{2}}{16}\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 33, normalized size = 1.22 \begin {gather*} -5 \, x^{4} - 10 \, x^{3} e^{\left (-\frac {4}{5} \, x + \frac {28}{5}\right )} - 5 \, x^{2} e^{\left (-\frac {8}{5} \, x + \frac {56}{5}\right )} + 15 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 25, normalized size = 0.93 \begin {gather*} -5\,x^2\,\left ({\mathrm {e}}^{\frac {56}{5}-\frac {8\,x}{5}}+2\,x\,{\mathrm {e}}^{\frac {28}{5}-\frac {4\,x}{5}}+x^2-3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.12, size = 39, normalized size = 1.44 \begin {gather*} - 5 x^{4} - 10 x^{3} e^{\frac {28}{5} - \frac {4 x}{5}} - 5 x^{2} e^{\frac {56}{5} - \frac {8 x}{5}} + 15 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________