Optimal. Leaf size=34 \[ \frac {5}{\left (9+\frac {3 \left (-2+e^{\frac {2}{x}-x \left (x-x^2\right )}\right )}{x}\right ) x} \]
________________________________________________________________________________________
Rubi [F] time = 6.52, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-15 x^2+e^{\frac {2-x^3+x^4}{x}} \left (10+10 x^3-15 x^4\right )}{12 x^2+3 e^{\frac {2 \left (2-x^3+x^4\right )}{x}} x^2-36 x^3+27 x^4+e^{\frac {2-x^3+x^4}{x}} \left (-12 x^2+18 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^{x^2} \left (-3 e^{x^2} x^2-e^{\frac {2}{x}+x^3} \left (-2-2 x^3+3 x^4\right )\right )}{3 x^2 \left (e^{\frac {2}{x}+x^3}+e^{x^2} (-2+3 x)\right )^2} \, dx\\ &=\frac {5}{3} \int \frac {e^{x^2} \left (-3 e^{x^2} x^2-e^{\frac {2}{x}+x^3} \left (-2-2 x^3+3 x^4\right )\right )}{x^2 \left (e^{\frac {2}{x}+x^3}+e^{x^2} (-2+3 x)\right )^2} \, dx\\ &=\frac {5}{3} \int \left (-\frac {e^{x^2} \left (-2-2 x^3+3 x^4\right )}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )}+\frac {e^{2 x^2} \left (4-6 x-3 x^2+4 x^3-12 x^4+9 x^5\right )}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2}\right ) \, dx\\ &=-\left (\frac {5}{3} \int \frac {e^{x^2} \left (-2-2 x^3+3 x^4\right )}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )} \, dx\right )+\frac {5}{3} \int \frac {e^{2 x^2} \left (4-6 x-3 x^2+4 x^3-12 x^4+9 x^5\right )}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2} \, dx\\ &=\frac {5}{3} \int \left (-\frac {3 e^{2 x^2}}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2}+\frac {4 e^{2 x^2}}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2}-\frac {6 e^{2 x^2}}{x \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2}+\frac {4 e^{2 x^2} x}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2}-\frac {12 e^{2 x^2} x^2}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2}+\frac {9 e^{2 x^2} x^3}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2}\right ) \, dx-\frac {5}{3} \int \left (-\frac {2 e^{x^2}}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )}-\frac {2 e^{x^2} x}{-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x}+\frac {3 e^{x^2} x^2}{-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x}\right ) \, dx\\ &=\frac {10}{3} \int \frac {e^{x^2}}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )} \, dx+\frac {10}{3} \int \frac {e^{x^2} x}{-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x} \, dx-5 \int \frac {e^{2 x^2}}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2} \, dx-5 \int \frac {e^{x^2} x^2}{-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x} \, dx+\frac {20}{3} \int \frac {e^{2 x^2}}{x^2 \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2} \, dx+\frac {20}{3} \int \frac {e^{2 x^2} x}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2} \, dx-10 \int \frac {e^{2 x^2}}{x \left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2} \, dx+15 \int \frac {e^{2 x^2} x^3}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2} \, dx-20 \int \frac {e^{2 x^2} x^2}{\left (-2 e^{x^2}+e^{\frac {2}{x}+x^3}+3 e^{x^2} x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.39, size = 34, normalized size = 1.00 \begin {gather*} \frac {5 e^{x^2}}{3 \left (e^{\frac {2}{x}+x^3}+e^{x^2} (-2+3 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 24, normalized size = 0.71 \begin {gather*} \frac {5}{3 \, {\left (3 \, x + e^{\left (\frac {x^{4} - x^{3} + 2}{x}\right )} - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 0.71 \begin {gather*} \frac {5}{3 \, {\left (3 \, x + e^{\left (\frac {x^{4} - x^{3} + 2}{x}\right )} - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 25, normalized size = 0.74
method | result | size |
norman | \(\frac {5}{3 \left (-2+{\mathrm e}^{\frac {x^{4}-x^{3}+2}{x}}+3 x \right )}\) | \(25\) |
risch | \(\frac {5}{3 \left (-2+{\mathrm e}^{\frac {x^{4}-x^{3}+2}{x}}+3 x \right )}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 29, normalized size = 0.85 \begin {gather*} \frac {5 \, e^{\left (x^{2}\right )}}{3 \, {\left ({\left (3 \, x - 2\right )} e^{\left (x^{2}\right )} + e^{\left (x^{3} + \frac {2}{x}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.54, size = 27, normalized size = 0.79 \begin {gather*} \frac {5}{3\,\left (3\,x+{\mathrm {e}}^{x^3}\,{\mathrm {e}}^{2/x}\,{\mathrm {e}}^{-x^2}-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 19, normalized size = 0.56 \begin {gather*} \frac {5}{9 x + 3 e^{\frac {x^{4} - x^{3} + 2}{x}} - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________