Optimal. Leaf size=29 \[ 2 \left (x-\frac {x}{\log \left (\frac {3}{2}\right )}\right ) \left (-3 x+\frac {1}{5} \left (2-\log ^2(x)\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 53, normalized size of antiderivative = 1.83, number of steps used = 5, number of rules used = 3, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {12, 2295, 2296} \begin {gather*} \frac {6 x^2}{\log \left (\frac {3}{2}\right )}-\frac {2}{75} (1-15 x)^2-\frac {2}{5} x \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right ) \log ^2(x)-\frac {4 x}{5 \log \left (\frac {3}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2295
Rule 2296
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\int \left (4-60 x-(4-60 x) \log \left (\frac {3}{2}\right )+\left (-4+4 \log \left (\frac {3}{2}\right )\right ) \log (x)+\left (-2+2 \log \left (\frac {3}{2}\right )\right ) \log ^2(x)\right ) \, dx}{5 \log \left (\frac {3}{2}\right )}\\ &=-\frac {2}{75} (1-15 x)^2-\frac {4 x}{5 \log \left (\frac {3}{2}\right )}+\frac {6 x^2}{\log \left (\frac {3}{2}\right )}-\frac {1}{5} \left (2 \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right )\right ) \int \log ^2(x) \, dx-\frac {1}{5} \left (4 \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right )\right ) \int \log (x) \, dx\\ &=-\frac {2}{75} (1-15 x)^2+\frac {4}{5} x \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right )-\frac {4 x}{5 \log \left (\frac {3}{2}\right )}+\frac {6 x^2}{\log \left (\frac {3}{2}\right )}-\frac {4}{5} x \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right ) \log (x)-\frac {2}{5} x \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right ) \log ^2(x)+\frac {1}{5} \left (4 \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right )\right ) \int \log (x) \, dx\\ &=-\frac {2}{75} (1-15 x)^2-\frac {4 x}{5 \log \left (\frac {3}{2}\right )}+\frac {6 x^2}{\log \left (\frac {3}{2}\right )}-\frac {2}{5} x \left (1-\frac {1}{\log \left (\frac {3}{2}\right )}\right ) \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 31, normalized size = 1.07 \begin {gather*} -\frac {2 \left (-1+\log \left (\frac {3}{2}\right )\right ) \left (-2 x+15 x^2+x \log ^2(x)\right )}{5 \log \left (\frac {3}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 38, normalized size = 1.31 \begin {gather*} -\frac {2 \, {\left ({\left (x \log \left (\frac {2}{3}\right ) + x\right )} \log \relax (x)^{2} + 15 \, x^{2} + {\left (15 \, x^{2} - 2 \, x\right )} \log \left (\frac {2}{3}\right ) - 2 \, x\right )}}{5 \, \log \left (\frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.13, size = 61, normalized size = 2.10 \begin {gather*} -\frac {2 \, {\left (15 \, x^{2} + {\left (x \log \relax (x)^{2} - 2 \, x \log \relax (x) + 2 \, x\right )} {\left (\log \left (\frac {2}{3}\right ) + 1\right )} + 2 \, {\left (x \log \relax (x) - x\right )} {\left (\log \left (\frac {2}{3}\right ) + 1\right )} + {\left (15 \, x^{2} - 2 \, x\right )} \log \left (\frac {2}{3}\right ) - 2 \, x\right )}}{5 \, \log \left (\frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 44, normalized size = 1.52
method | result | size |
default | \(\frac {4 x -30 \ln \left (\frac {2}{3}\right ) x^{2}+4 \ln \left (\frac {2}{3}\right ) x -2 \ln \left (\frac {2}{3}\right ) \ln \relax (x )^{2} x -2 x \ln \relax (x )^{2}-30 x^{2}}{5 \ln \left (\frac {2}{3}\right )}\) | \(44\) |
norman | \(\frac {4 \left (\ln \relax (3)-\ln \relax (2)-1\right ) x}{5 \left (\ln \relax (3)-\ln \relax (2)\right )}-\frac {6 \left (\ln \relax (3)-\ln \relax (2)-1\right ) x^{2}}{\ln \relax (3)-\ln \relax (2)}-\frac {2 \left (\ln \relax (3)-\ln \relax (2)-1\right ) x \ln \relax (x )^{2}}{5 \left (\ln \relax (3)-\ln \relax (2)\right )}\) | \(68\) |
risch | \(\frac {2 \left (\ln \relax (3)-\ln \relax (2)-1\right ) x \ln \relax (x )^{2}}{5 \left (\ln \relax (2)-\ln \relax (3)\right )}+\frac {6 x^{2} \ln \relax (3)}{\ln \relax (2)-\ln \relax (3)}-\frac {6 x^{2} \ln \relax (2)}{\ln \relax (2)-\ln \relax (3)}-\frac {4 x \ln \relax (3)}{5 \left (\ln \relax (2)-\ln \relax (3)\right )}+\frac {4 x \ln \relax (2)}{5 \left (\ln \relax (2)-\ln \relax (3)\right )}-\frac {6 x^{2}}{\ln \relax (2)-\ln \relax (3)}+\frac {4 x}{5 \left (\ln \relax (2)-\ln \relax (3)\right )}\) | \(112\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.35, size = 57, normalized size = 1.97 \begin {gather*} -\frac {2 \, {\left ({\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x {\left (\log \left (\frac {2}{3}\right ) + 1\right )} + 15 \, x^{2} + 2 \, {\left (x \log \relax (x) - x\right )} {\left (\log \left (\frac {2}{3}\right ) + 1\right )} + {\left (15 \, x^{2} - 2 \, x\right )} \log \left (\frac {2}{3}\right ) - 2 \, x\right )}}{5 \, \log \left (\frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.50, size = 38, normalized size = 1.31 \begin {gather*} \frac {x\,\left (\frac {4\,\ln \left (\frac {2}{3}\right )}{5}+\frac {{\ln \relax (x)}^2\,\left (\ln \left (\frac {9}{4}\right )-2\right )}{5}+\frac {4}{5}\right )}{\ln \left (\frac {2}{3}\right )}-\frac {x^2\,\left (6\,\ln \left (\frac {2}{3}\right )+6\right )}{\ln \left (\frac {2}{3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 76, normalized size = 2.62 \begin {gather*} \frac {x^{2} \left (-6 - 6 \log {\relax (2 )} + 6 \log {\relax (3 )}\right )}{- \log {\relax (3 )} + \log {\relax (2 )}} + \frac {x \left (- 4 \log {\relax (3 )} + 4 \log {\relax (2 )} + 4\right )}{- 5 \log {\relax (3 )} + 5 \log {\relax (2 )}} + \frac {\left (- 2 x - 2 x \log {\relax (2 )} + 2 x \log {\relax (3 )}\right ) \log {\relax (x )}^{2}}{- 5 \log {\relax (3 )} + 5 \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________