Optimal. Leaf size=29 \[ \frac {x}{x^2+\frac {x}{\log \left (3 \left (255+x+\frac {x^3}{4-x}\right )\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.83, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16+8 x-13 x^2+2 x^3+\left (4080-2024 x+247 x^2+5 x^3-x^4\right ) \log ^2\left (\frac {-3060+753 x+3 x^2-3 x^3}{-4+x}\right )}{-4080+2024 x-247 x^2-5 x^3+x^4+\left (-8160 x+4048 x^2-494 x^3-10 x^4+2 x^5\right ) \log \left (\frac {-3060+753 x+3 x^2-3 x^3}{-4+x}\right )+\left (-4080 x^2+2024 x^3-247 x^4-5 x^5+x^6\right ) \log ^2\left (\frac {-3060+753 x+3 x^2-3 x^3}{-4+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16-8 x+13 x^2-2 x^3-\left (4080-2024 x+247 x^2+5 x^3-x^4\right ) \log ^2\left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )}{\left (4080-2024 x+247 x^2+5 x^3-x^4\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx\\ &=\int \left (-\frac {1}{x^2}+\frac {4080-2024 x+231 x^2+13 x^3-14 x^4+2 x^5}{(-4+x) x^2 \left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2}+\frac {2}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )}\right ) \, dx\\ &=\frac {1}{x}+2 \int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )} \, dx+\int \frac {4080-2024 x+231 x^2+13 x^3-14 x^4+2 x^5}{(-4+x) x^2 \left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx\\ &=\frac {1}{x}+2 \int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )} \, dx+\int \left (-\frac {1}{(-4+x) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2}-\frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2}+\frac {-251-2 x+3 x^2}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2}\right ) \, dx\\ &=\frac {1}{x}+2 \int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )} \, dx-\int \frac {1}{(-4+x) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx-\int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx+\int \frac {-251-2 x+3 x^2}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx\\ &=\frac {1}{x}+2 \int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )} \, dx-\int \frac {1}{(-4+x) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx-\int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx+\int \left (-\frac {251}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2}-\frac {2 x}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2}+\frac {3 x^2}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2}\right ) \, dx\\ &=\frac {1}{x}-2 \int \frac {x}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx+2 \int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )} \, dx+3 \int \frac {x^2}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx-251 \int \frac {1}{\left (1020-251 x-x^2+x^3\right ) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx-\int \frac {1}{(-4+x) \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx-\int \frac {1}{x^2 \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 36, normalized size = 1.24 \begin {gather*} \frac {1}{x}-\frac {1}{x \left (1+x \log \left (-\frac {3 \left (1020-251 x-x^2+x^3\right )}{-4+x}\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 49, normalized size = 1.69 \begin {gather*} \frac {\log \left (-\frac {3 \, {\left (x^{3} - x^{2} - 251 \, x + 1020\right )}}{x - 4}\right )}{x \log \left (-\frac {3 \, {\left (x^{3} - x^{2} - 251 \, x + 1020\right )}}{x - 4}\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.74, size = 35, normalized size = 1.21 \begin {gather*} -\frac {1}{x^{2} \log \left (-\frac {3 \, {\left (x^{3} - x^{2} - 251 \, x + 1020\right )}}{x - 4}\right ) + x} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 38, normalized size = 1.31
method | result | size |
risch | \(\frac {1}{x}-\frac {1}{x \left (x \ln \left (\frac {-3 x^{3}+3 x^{2}+753 x -3060}{x -4}\right )+1\right )}\) | \(38\) |
norman | \(-\frac {x \ln \left (\frac {-3 x^{3}+3 x^{2}+753 x -3060}{x -4}\right )^{2}}{x \ln \left (\frac {-3 x^{3}+3 x^{2}+753 x -3060}{x -4}\right )+1}-\ln \left (x -4\right )+\ln \left (x^{3}-x^{2}-251 x +1020\right )\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.49, size = 62, normalized size = 2.14 \begin {gather*} \frac {i \, \pi + \log \relax (3) + \log \left (x^{3} - x^{2} - 251 \, x + 1020\right ) - \log \left (x - 4\right )}{{\left (i \, \pi + \log \relax (3)\right )} x + x \log \left (x^{3} - x^{2} - 251 \, x + 1020\right ) - x \log \left (x - 4\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.84, size = 36, normalized size = 1.24 \begin {gather*} \frac {1}{x}-\frac {1}{x+x^2\,\ln \left (\frac {-3\,x^3+3\,x^2+753\,x-3060}{x-4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 29, normalized size = 1.00 \begin {gather*} - \frac {1}{x^{2} \log {\left (\frac {- 3 x^{3} + 3 x^{2} + 753 x - 3060}{x - 4} \right )} + x} + \frac {1}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________