Optimal. Leaf size=24 \[ e^x \left (1+2 x \left (e^x+x\right )+\frac {x}{\log (x)}\right ) \log (25 x) \]
________________________________________________________________________________________
Rubi [B] time = 1.62, antiderivative size = 58, normalized size of antiderivative = 2.42, number of steps used = 5, number of rules used = 3, integrand size = 101, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.030, Rules used = {6688, 6742, 2288} \begin {gather*} \frac {e^x \left (2 x^3 \log ^2(x) \log (25 x)+x^2 \log (x) \log (25 x)+x \log ^2(x) \log (25 x)\right )}{x \log ^2(x)}+2 e^{2 x} x \log (25 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-x \log (25 x)+\log (x) (x+x (1+x) \log (25 x))+\log ^2(x) \left (1+2 e^x x+2 x^2+x \left (1+4 x+2 x^2+e^x (2+4 x)\right ) \log (25 x)\right )\right )}{x \log ^2(x)} \, dx\\ &=\int \left (2 e^{2 x} (1+\log (25 x)+2 x \log (25 x))+\frac {e^x \left (x \log (x)+\log ^2(x)+2 x^2 \log ^2(x)-x \log (25 x)+x \log (x) \log (25 x)+x^2 \log (x) \log (25 x)+x \log ^2(x) \log (25 x)+4 x^2 \log ^2(x) \log (25 x)+2 x^3 \log ^2(x) \log (25 x)\right )}{x \log ^2(x)}\right ) \, dx\\ &=2 \int e^{2 x} (1+\log (25 x)+2 x \log (25 x)) \, dx+\int \frac {e^x \left (x \log (x)+\log ^2(x)+2 x^2 \log ^2(x)-x \log (25 x)+x \log (x) \log (25 x)+x^2 \log (x) \log (25 x)+x \log ^2(x) \log (25 x)+4 x^2 \log ^2(x) \log (25 x)+2 x^3 \log ^2(x) \log (25 x)\right )}{x \log ^2(x)} \, dx\\ &=2 e^{2 x} x \log (25 x)+\frac {e^x \left (x^2 \log (x) \log (25 x)+x \log ^2(x) \log (25 x)+2 x^3 \log ^2(x) \log (25 x)\right )}{x \log ^2(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.71, size = 30, normalized size = 1.25 \begin {gather*} \frac {e^x \left (x+\left (1+2 e^x x+2 x^2\right ) \log (x)\right ) \log (25 x)}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 65, normalized size = 2.71 \begin {gather*} \frac {2 \, x e^{x} \log \relax (5) + {\left (2 \, x e^{\left (2 \, x\right )} + {\left (2 \, x^{2} + 1\right )} e^{x}\right )} \log \relax (x)^{2} + {\left (4 \, x e^{\left (2 \, x\right )} \log \relax (5) + {\left (2 \, {\left (2 \, x^{2} + 1\right )} \log \relax (5) + x\right )} e^{x}\right )} \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 78, normalized size = 3.25 \begin {gather*} \frac {4 \, x^{2} e^{x} \log \relax (5) \log \relax (x) + 2 \, x^{2} e^{x} \log \relax (x)^{2} + 4 \, x e^{\left (2 \, x\right )} \log \relax (5) \log \relax (x) + 2 \, x e^{\left (2 \, x\right )} \log \relax (x)^{2} + 2 \, x e^{x} \log \relax (5) + x e^{x} \log \relax (x) + 2 \, e^{x} \log \relax (5) \log \relax (x) + e^{x} \log \relax (x)^{2}}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.18, size = 61, normalized size = 2.54
method | result | size |
risch | \(\left (2 \,{\mathrm e}^{x} x^{2}+2 x \,{\mathrm e}^{2 x}+{\mathrm e}^{x}\right ) \ln \relax (x )+4 x \ln \relax (5) {\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} \ln \relax (5)+{\mathrm e}^{x} x +4 x^{2} \ln \relax (5) {\mathrm e}^{x}+\frac {2 x \,{\mathrm e}^{x} \ln \relax (5)}{\ln \relax (x )}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} {\left (2 \, x^{2} + 1\right )} e^{x} \log \relax (x) + {\left (4 \, x \log \relax (5) + 2 \, x \log \relax (x) - 1\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x - 1\right )} e^{x} + {\rm Ei}\relax (x) + e^{\left (2 \, x\right )} + \int \frac {{\left ({\left (4 \, x^{3} \log \relax (5) + x^{2} {\left (8 \, \log \relax (5) - 1\right )} + x {\left (2 \, \log \relax (5) + 1\right )} - 1\right )} \log \relax (x)^{2} - 2 \, x \log \relax (5) + 2 \, {\left (x^{2} \log \relax (5) + x \log \relax (5)\right )} \log \relax (x)\right )} e^{x}}{x \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 63, normalized size = 2.62 \begin {gather*} {\mathrm {e}}^x\,\ln \relax (x)+2\,{\mathrm {e}}^x\,\ln \relax (5)+x\,{\mathrm {e}}^x+4\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (5)+4\,x^2\,{\mathrm {e}}^x\,\ln \relax (5)+2\,x\,{\mathrm {e}}^{2\,x}\,\ln \relax (x)+2\,x^2\,{\mathrm {e}}^x\,\ln \relax (x)+\frac {2\,x\,{\mathrm {e}}^x\,\ln \relax (5)}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.43, size = 76, normalized size = 3.17 \begin {gather*} \frac {\left (2 x \log {\relax (x )}^{2} + 4 x \log {\relax (5 )} \log {\relax (x )}\right ) e^{2 x} + \left (2 x^{2} \log {\relax (x )}^{2} + 4 x^{2} \log {\relax (5 )} \log {\relax (x )} + x \log {\relax (x )} + 2 x \log {\relax (5 )} + \log {\relax (x )}^{2} + 2 \log {\relax (5 )} \log {\relax (x )}\right ) e^{x}}{\log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________