Optimal. Leaf size=25 \[ -9+x^3+\log \left (3-e^{2 (x+\log (5+x))}-\frac {x}{3}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.13, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+x-135 x^2-12 x^3+3 x^4+e^{2 x} (5+x)^2 \left (36+6 x+45 x^2+9 x^3\right )}{-45-4 x+x^2+e^{2 x} (5+x)^2 (15+3 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {-113-7 x+2 x^2}{(5+x) \left (-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2\right )}+\frac {12+2 x+15 x^2+3 x^3}{5+x}\right ) \, dx\\ &=-\int \frac {-113-7 x+2 x^2}{(5+x) \left (-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2\right )} \, dx+\int \frac {12+2 x+15 x^2+3 x^3}{5+x} \, dx\\ &=\int \left (2+3 x^2+\frac {2}{5+x}\right ) \, dx-\int \frac {113+7 x-2 x^2}{(5+x) \left (9-x-3 e^{2 x} (5+x)^2\right )} \, dx\\ &=2 x+x^3+2 \log (5+x)-\int \left (-\frac {17}{-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2}+\frac {2 x}{-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2}-\frac {28}{(5+x) \left (-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2\right )}\right ) \, dx\\ &=2 x+x^3+2 \log (5+x)-2 \int \frac {x}{-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2} \, dx+17 \int \frac {1}{-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2} \, dx+28 \int \frac {1}{(5+x) \left (-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2\right )} \, dx\\ &=2 x+x^3+2 \log (5+x)-2 \int \frac {x}{-9+x+3 e^{2 x} (5+x)^2} \, dx+17 \int \frac {1}{-9+x+3 e^{2 x} (5+x)^2} \, dx+28 \int \frac {1}{(5+x) \left (-9+75 e^{2 x}+x+30 e^{2 x} x+3 e^{2 x} x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 35, normalized size = 1.40 \begin {gather*} x^3+\log \left (9-75 e^{2 x}-x-30 e^{2 x} x-3 e^{2 x} x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 21, normalized size = 0.84 \begin {gather*} x^{3} + \log \left (x + 3 \, e^{\left (2 \, x + 2 \, \log \left (x + 5\right )\right )} - 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 30, normalized size = 1.20 \begin {gather*} x^{3} + \log \left (3 \, x^{2} e^{\left (2 \, x\right )} + 30 \, x e^{\left (2 \, x\right )} + x + 75 \, e^{\left (2 \, x\right )} - 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 21, normalized size = 0.84
method | result | size |
risch | \(x^{3}+\ln \left (\left (5+x \right )^{2} {\mathrm e}^{2 x}+\frac {x}{3}-3\right )\) | \(21\) |
norman | \(x^{3}+\ln \left (x +3 \,{\mathrm e}^{2 \ln \left (5+x \right )+2 x}-9\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.67, size = 40, normalized size = 1.60 \begin {gather*} x^{3} + 2 \, \log \left (x + 5\right ) + \log \left (\frac {3 \, {\left (x^{2} + 10 \, x + 25\right )} e^{\left (2 \, x\right )} + x - 9}{3 \, {\left (x^{2} + 10 \, x + 25\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.75, size = 30, normalized size = 1.20 \begin {gather*} \ln \left (x+75\,{\mathrm {e}}^{2\,x}+30\,x\,{\mathrm {e}}^{2\,x}+3\,x^2\,{\mathrm {e}}^{2\,x}-9\right )+x^3 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 29, normalized size = 1.16 \begin {gather*} x^{3} + 2 \log {\left (x + 5 \right )} + \log {\left (\frac {x - 9}{3 x^{2} + 30 x + 75} + e^{2 x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________