Optimal. Leaf size=27 \[ \frac {9}{5 \left (\frac {x^2}{4}+\log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 3.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-144 x-288 e^x x-144 x^2+\left (-144 x-72 x^3+e^x \left (-144-72 x^2\right )\right ) \log \left (e^{2 x}+e^x x\right )}{\left (5 e^x x^5+5 x^6\right ) \log \left (e^{2 x}+e^x x\right )+\left (40 e^x x^3+40 x^4\right ) \log \left (e^{2 x}+e^x x\right ) \log \left (x \log \left (e^{2 x}+e^x x\right )\right )+\left (80 e^x x+80 x^2\right ) \log \left (e^{2 x}+e^x x\right ) \log ^2\left (x \log \left (e^{2 x}+e^x x\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {72 \left (-2 x \left (1+2 e^x+x\right )-\left (e^x+x\right ) \left (2+x^2\right ) \log \left (e^x \left (e^x+x\right )\right )\right )}{5 x \left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {72}{5} \int \frac {-2 x \left (1+2 e^x+x\right )-\left (e^x+x\right ) \left (2+x^2\right ) \log \left (e^x \left (e^x+x\right )\right )}{x \left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {72}{5} \int \left (\frac {2 (-1+x)}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2}+\frac {-4 x-2 \log \left (e^x \left (e^x+x\right )\right )-x^2 \log \left (e^x \left (e^x+x\right )\right )}{x \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2}\right ) \, dx\\ &=\frac {72}{5} \int \frac {-4 x-2 \log \left (e^x \left (e^x+x\right )\right )-x^2 \log \left (e^x \left (e^x+x\right )\right )}{x \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx+\frac {144}{5} \int \frac {-1+x}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx\\ &=\frac {72}{5} \int \frac {-4 x-\left (2+x^2\right ) \log \left (e^x \left (e^x+x\right )\right )}{x \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx+\frac {144}{5} \int \left (-\frac {1}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2}+\frac {x}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2}\right ) \, dx\\ &=\frac {72}{5} \int \left (-\frac {2}{x \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2}-\frac {x}{\left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2}-\frac {4}{\log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2}\right ) \, dx-\frac {144}{5} \int \frac {1}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx+\frac {144}{5} \int \frac {x}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx\\ &=-\left (\frac {72}{5} \int \frac {x}{\left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx\right )-\frac {144}{5} \int \frac {1}{x \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx-\frac {144}{5} \int \frac {1}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx+\frac {144}{5} \int \frac {x}{\left (e^x+x\right ) \log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx-\frac {288}{5} \int \frac {1}{\log \left (e^x \left (e^x+x\right )\right ) \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.43, size = 25, normalized size = 0.93 \begin {gather*} \frac {36}{5 \left (x^2+4 \log \left (x \log \left (e^x \left (e^x+x\right )\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 23, normalized size = 0.85 \begin {gather*} \frac {36}{5 \, {\left (x^{2} + 4 \, \log \left (x \log \left (x e^{x} + e^{\left (2 \, x\right )}\right )\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.99, size = 23, normalized size = 0.85 \begin {gather*} \frac {36}{5 \, {\left (x^{2} + 4 \, \log \left (x \log \left (x e^{x} + e^{\left (2 \, x\right )}\right )\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.06, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (-72 x^{2}-144\right ) {\mathrm e}^{x}-72 x^{3}-144 x \right ) \ln \left ({\mathrm e}^{x} x +{\mathrm e}^{2 x}\right )-288 \,{\mathrm e}^{x} x -144 x^{2}-144 x}{\left (80 \,{\mathrm e}^{x} x +80 x^{2}\right ) \ln \left ({\mathrm e}^{x} x +{\mathrm e}^{2 x}\right ) \ln \left (x \ln \left ({\mathrm e}^{x} x +{\mathrm e}^{2 x}\right )\right )^{2}+\left (40 \,{\mathrm e}^{x} x^{3}+40 x^{4}\right ) \ln \left ({\mathrm e}^{x} x +{\mathrm e}^{2 x}\right ) \ln \left (x \ln \left ({\mathrm e}^{x} x +{\mathrm e}^{2 x}\right )\right )+\left (5 x^{5} {\mathrm e}^{x}+5 x^{6}\right ) \ln \left ({\mathrm e}^{x} x +{\mathrm e}^{2 x}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 22, normalized size = 0.81 \begin {gather*} \frac {36}{5 \, {\left (x^{2} + 4 \, \log \left (x + \log \left (x + e^{x}\right )\right ) + 4 \, \log \relax (x)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.67, size = 25, normalized size = 0.93 \begin {gather*} \frac {36}{5\,\left (4\,\ln \left (x\,\ln \left ({\mathrm {e}}^{2\,x}+x\,{\mathrm {e}}^x\right )\right )+x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.11, size = 22, normalized size = 0.81 \begin {gather*} \frac {36}{5 x^{2} + 20 \log {\left (x \log {\left (x e^{x} + e^{2 x} \right )} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________