Optimal. Leaf size=24 \[ \log \left (\left (x+\frac {x}{x-\log (x)}\right )^2+65536 \log ^4\left (x^2\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2 x^2-2 x^3-2 x^4-2 x^5+\left (4 x^2+6 x^3+6 x^4\right ) \log (x)+\left (-4 x^2-6 x^3\right ) \log ^2(x)+2 x^2 \log ^3(x)+\left (-524288 x^3+1572864 x^2 \log (x)-1572864 x \log ^2(x)+524288 \log ^3(x)\right ) \log ^3\left (x^2\right )}{-x^4-2 x^5-x^6+\left (x^3+4 x^4+3 x^5\right ) \log (x)+\left (-2 x^3-3 x^4\right ) \log ^2(x)+x^3 \log ^3(x)+\left (-65536 x^4+196608 x^3 \log (x)-196608 x^2 \log ^2(x)+65536 x \log ^3(x)\right ) \log ^4\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 34.57, size = 244, normalized size = 10.17 \begin {gather*} -2 \log (x-\log (x))+\log \left (x^2+2 x^3+x^4+1048576 \log ^6(x)+65536 x^2 \left (-2 \log (x)+\log \left (x^2\right )\right )^4+\log ^5(x) \left (-2097152 x+2097152 \left (-2 \log (x)+\log \left (x^2\right )\right )\right )+\log ^4(x) \left (1048576 x^2-4194304 x \left (-2 \log (x)+\log \left (x^2\right )\right )+1572864 \left (-2 \log (x)+\log \left (x^2\right )\right )^2\right )+\log ^3(x) \left (2097152 x^2 \left (-2 \log (x)+\log \left (x^2\right )\right )-3145728 x \left (-2 \log (x)+\log \left (x^2\right )\right )^2+524288 \left (-2 \log (x)+\log \left (x^2\right )\right )^3\right )+\log ^2(x) \left (x^2+1572864 x^2 \left (-2 \log (x)+\log \left (x^2\right )\right )^2-1048576 x \left (-2 \log (x)+\log \left (x^2\right )\right )^3+65536 \left (-2 \log (x)+\log \left (x^2\right )\right )^4\right )+\log (x) \left (-2 x^2-2 x^3+524288 x^2 \left (-2 \log (x)+\log \left (x^2\right )\right )^3-131072 x \left (-2 \log (x)+\log \left (x^2\right )\right )^4\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 64, normalized size = 2.67 \begin {gather*} \log \left (1048576 \, x^{2} \log \relax (x)^{4} - 2097152 \, x \log \relax (x)^{5} + 1048576 \, \log \relax (x)^{6} + x^{4} + x^{2} \log \relax (x)^{2} + 2 \, x^{3} + x^{2} - 2 \, {\left (x^{3} + x^{2}\right )} \log \relax (x)\right ) - 2 \, \log \left (-x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.05, size = 67, normalized size = 2.79 \begin {gather*} \log \left (1048576 \, x^{2} \log \relax (x)^{4} - 2097152 \, x \log \relax (x)^{5} + 1048576 \, \log \relax (x)^{6} + x^{4} - 2 \, x^{3} \log \relax (x) + x^{2} \log \relax (x)^{2} + 2 \, x^{3} - 2 \, x^{2} \log \relax (x) + x^{2}\right ) - 2 \, \log \left (x - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 45.92, size = 1587, normalized size = 66.12
method | result | size |
risch | \(-2 \ln \left (\ln \relax (x )-x \right )+\ln \left (\ln \relax (x )^{6}+\left (-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-2 x \right ) \ln \relax (x )^{5}+\left (2 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-4 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\frac {3 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}}{8}-\frac {3 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{2} \mathrm {csgn}\left (i x \right )^{4}}{8}+\frac {3 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{3} \mathrm {csgn}\left (i x \right )^{3}}{2}-\frac {9 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{4} \mathrm {csgn}\left (i x \right )^{2}}{4}+\frac {3 \pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{5} \mathrm {csgn}\left (i x \right )}{2}+2 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}+x^{2}\right ) \ln \relax (x )^{4}+\left (-i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\frac {i \pi ^{3} \mathrm {csgn}\left (i x^{2}\right )^{9}}{16}+\frac {3 x \,\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}}{4}+\frac {15 i \pi ^{3} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{7}}{16}-\frac {3 i \pi ^{3} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{8}}{8}-i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}+\frac {3 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}}{4}-3 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}+\frac {9 x \,\pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}}{2}-3 x \,\pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}+\frac {i \pi ^{3} \mathrm {csgn}\left (i x \right )^{6} \mathrm {csgn}\left (i x^{2}\right )^{3}}{16}-\frac {3 i \pi ^{3} \mathrm {csgn}\left (i x \right )^{5} \mathrm {csgn}\left (i x^{2}\right )^{4}}{8}+\frac {15 i \pi ^{3} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{5}}{16}-\frac {5 i \pi ^{3} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{6}}{4}\right ) \ln \relax (x )^{3}+\left (\frac {5 i \pi ^{3} x \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{6}}{2}+\frac {3 i \pi ^{3} x \mathrm {csgn}\left (i x \right )^{5} \mathrm {csgn}\left (i x^{2}\right )^{4}}{4}-\frac {15 i \pi ^{3} x \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{5}}{8}+\frac {3 i \pi ^{3} x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{8}}{4}-\frac {15 i \pi ^{3} x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{7}}{8}-\frac {i \pi ^{3} x \mathrm {csgn}\left (i x^{2}\right )^{9}}{8}+\frac {\pi ^{4} \mathrm {csgn}\left (i x^{2}\right )^{12}}{256}-\frac {\pi ^{4} \mathrm {csgn}\left (i x \right )^{7} \mathrm {csgn}\left (i x^{2}\right )^{5}}{32}+\frac {7 \pi ^{4} \mathrm {csgn}\left (i x \right )^{6} \mathrm {csgn}\left (i x^{2}\right )^{6}}{64}-\frac {\pi ^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{11}}{32}+\frac {\pi ^{4} \mathrm {csgn}\left (i x \right )^{8} \mathrm {csgn}\left (i x^{2}\right )^{4}}{256}-\frac {7 \pi ^{4} \mathrm {csgn}\left (i x \right )^{5} \mathrm {csgn}\left (i x^{2}\right )^{7}}{32}+\frac {35 \pi ^{4} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{8}}{128}-\frac {7 \pi ^{4} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{9}}{32}+\frac {7 \pi ^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{10}}{64}-\frac {3 \pi ^{2} x^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}}{8}-\frac {3 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}}{8}+\frac {3 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}}{2}-\frac {9 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}}{4}+\frac {3 \pi ^{2} x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}}{2}-\frac {i \pi ^{3} x \mathrm {csgn}\left (i x \right )^{6} \mathrm {csgn}\left (i x^{2}\right )^{3}}{8}+\frac {x^{2}}{1048576}\right ) \ln \relax (x )^{2}+\left (\frac {i \pi ^{3} x^{2} \mathrm {csgn}\left (i x^{2}\right )^{9}}{16}+\frac {15 i \pi ^{3} x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{7}}{16}-\frac {3 i \pi ^{3} x^{2} \mathrm {csgn}\left (i x \right )^{5} \mathrm {csgn}\left (i x^{2}\right )^{4}}{8}+\frac {15 i \pi ^{3} x^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{5}}{16}+\frac {i \pi ^{3} x^{2} \mathrm {csgn}\left (i x \right )^{6} \mathrm {csgn}\left (i x^{2}\right )^{3}}{16}-\frac {3 i \pi ^{3} x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{8}}{8}-\frac {x \,\pi ^{4} \mathrm {csgn}\left (i x^{2}\right )^{12}}{128}-\frac {5 i \pi ^{3} x^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{6}}{4}-\frac {x \,\pi ^{4} \mathrm {csgn}\left (i x \right )^{8} \mathrm {csgn}\left (i x^{2}\right )^{4}}{128}+\frac {x \,\pi ^{4} \mathrm {csgn}\left (i x \right )^{7} \mathrm {csgn}\left (i x^{2}\right )^{5}}{16}-\frac {7 x \,\pi ^{4} \mathrm {csgn}\left (i x \right )^{6} \mathrm {csgn}\left (i x^{2}\right )^{6}}{32}+\frac {7 x \,\pi ^{4} \mathrm {csgn}\left (i x \right )^{5} \mathrm {csgn}\left (i x^{2}\right )^{7}}{16}-\frac {35 x \,\pi ^{4} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{8}}{64}+\frac {7 x \,\pi ^{4} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{9}}{16}-\frac {7 x \,\pi ^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{10}}{32}+\frac {x \,\pi ^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{11}}{16}-\frac {x^{2}}{524288}-\frac {x^{3}}{524288}\right ) \ln \relax (x )+\frac {x^{4}}{1048576}+\frac {x^{3}}{524288}+\frac {x^{2}}{1048576}+\frac {7 x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right )^{6} \mathrm {csgn}\left (i x^{2}\right )^{6}}{64}-\frac {7 x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right )^{5} \mathrm {csgn}\left (i x^{2}\right )^{7}}{32}+\frac {35 x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{8}}{128}-\frac {7 x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{9}}{32}+\frac {7 x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{10}}{64}-\frac {x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{11}}{32}-\frac {x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right )^{7} \mathrm {csgn}\left (i x^{2}\right )^{5}}{32}+\frac {x^{2} \pi ^{4} \mathrm {csgn}\left (i x \right )^{8} \mathrm {csgn}\left (i x^{2}\right )^{4}}{256}+\frac {x^{2} \pi ^{4} \mathrm {csgn}\left (i x^{2}\right )^{12}}{256}\right )\) | \(1587\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.39, size = 66, normalized size = 2.75 \begin {gather*} \log \left (x^{2} \log \relax (x)^{4} - 2 \, x \log \relax (x)^{5} + \log \relax (x)^{6} + \frac {1}{1048576} \, x^{4} + \frac {1}{1048576} \, x^{2} \log \relax (x)^{2} + \frac {1}{524288} \, x^{3} + \frac {1}{1048576} \, x^{2} - \frac {1}{524288} \, {\left (x^{3} + x^{2}\right )} \log \relax (x)\right ) - 2 \, \log \left (-x + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\ln \relax (x)}^2\,\left (6\,x^3+4\,x^2\right )-\ln \relax (x)\,\left (6\,x^4+6\,x^3+4\,x^2\right )+{\ln \left (x^2\right )}^3\,\left (524288\,x^3-1572864\,x^2\,\ln \relax (x)+1572864\,x\,{\ln \relax (x)}^2-524288\,{\ln \relax (x)}^3\right )-2\,x^2\,{\ln \relax (x)}^3+2\,x^2+2\,x^3+2\,x^4+2\,x^5}{{\ln \relax (x)}^2\,\left (3\,x^4+2\,x^3\right )-{\ln \left (x^2\right )}^4\,\left (-65536\,x^4+196608\,x^3\,\ln \relax (x)-196608\,x^2\,{\ln \relax (x)}^2+65536\,x\,{\ln \relax (x)}^3\right )-x^3\,{\ln \relax (x)}^3+x^4+2\,x^5+x^6-\ln \relax (x)\,\left (3\,x^5+4\,x^4+x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.64, size = 71, normalized size = 2.96 \begin {gather*} - 2 \log {\left (- x + \log {\relax (x )} \right )} + \log {\left (\frac {x^{4}}{1048576} + \frac {x^{3}}{524288} + x^{2} \log {\relax (x )}^{4} + \frac {x^{2} \log {\relax (x )}^{2}}{1048576} + \frac {x^{2}}{1048576} - 2 x \log {\relax (x )}^{5} + \left (- \frac {x^{3}}{524288} - \frac {x^{2}}{524288}\right ) \log {\relax (x )} + \log {\relax (x )}^{6} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________