Optimal. Leaf size=34 \[ \frac {x (x+\log ((1-x) (-2+x)))}{9 \left (\frac {5}{9-x}+\frac {x}{4}\right )} \]
________________________________________________________________________________________
Rubi [B] time = 5.01, antiderivative size = 985, normalized size of antiderivative = 28.97, number of steps used = 106, number of rules used = 17, integrand size = 89, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.191, Rules used = {6741, 12, 6728, 6742, 638, 618, 206, 632, 31, 2528, 2525, 800, 2524, 2418, 2394, 2393, 2391}
result too large to display
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 31
Rule 206
Rule 618
Rule 632
Rule 638
Rule 800
Rule 2391
Rule 2393
Rule 2394
Rule 2418
Rule 2524
Rule 2525
Rule 2528
Rule 6728
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {720 x-3444 x^2+1748 x^3+152 x^4-76 x^5+4 x^6+\left (1440-2480 x+1200 x^2-160 x^3\right ) \log \left (-2+3 x-x^2\right )}{9 \left (20+9 x-x^2\right )^2 \left (2-3 x+x^2\right )} \, dx\\ &=\frac {1}{9} \int \frac {720 x-3444 x^2+1748 x^3+152 x^4-76 x^5+4 x^6+\left (1440-2480 x+1200 x^2-160 x^3\right ) \log \left (-2+3 x-x^2\right )}{\left (20+9 x-x^2\right )^2 \left (2-3 x+x^2\right )} \, dx\\ &=\frac {1}{9} \int \left (\frac {720 x}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2}-\frac {3444 x^2}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2}+\frac {1748 x^3}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2}+\frac {152 x^4}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2}-\frac {76 x^5}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2}+\frac {4 x^6}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2}-\frac {80 (-9+2 x) \log \left (-2+3 x-x^2\right )}{\left (-20-9 x+x^2\right )^2}\right ) \, dx\\ &=\frac {4}{9} \int \frac {x^6}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2} \, dx-\frac {76}{9} \int \frac {x^5}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2} \, dx-\frac {80}{9} \int \frac {(-9+2 x) \log \left (-2+3 x-x^2\right )}{\left (-20-9 x+x^2\right )^2} \, dx+\frac {152}{9} \int \frac {x^4}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2} \, dx+80 \int \frac {x}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2} \, dx+\frac {1748}{9} \int \frac {x^3}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2} \, dx-\frac {1148}{3} \int \frac {x^2}{(-2+x) (-1+x) \left (-20-9 x+x^2\right )^2} \, dx\\ &=\frac {4}{9} \int \left (1+\frac {16}{289 (-2+x)}-\frac {1}{784 (-1+x)}+\frac {1293820+700599 x}{476 \left (-20-9 x+x^2\right )^2}+\frac {35204776+4745841 x}{226576 \left (-20-9 x+x^2\right )}\right ) \, dx-\frac {76}{9} \int \left (\frac {8}{289 (-2+x)}-\frac {1}{784 (-1+x)}+\frac {118380+64691 x}{476 \left (-20-9 x+x^2\right )^2}+\frac {3 (920168+73531 x)}{226576 \left (-20-9 x+x^2\right )}\right ) \, dx-\frac {80}{9} \int \left (-\frac {9 \log \left (-2+3 x-x^2\right )}{\left (-20-9 x+x^2\right )^2}+\frac {2 x \log \left (-2+3 x-x^2\right )}{\left (-20-9 x+x^2\right )^2}\right ) \, dx+\frac {152}{9} \int \left (\frac {4}{289 (-2+x)}-\frac {1}{784 (-1+x)}+\frac {11420+5919 x}{476 \left (-20-9 x+x^2\right )^2}-\frac {3 (-82072+949 x)}{226576 \left (-20-9 x+x^2\right )}\right ) \, dx+80 \int \left (\frac {1}{578 (-2+x)}-\frac {1}{784 (-1+x)}+\frac {-60+11 x}{476 \left (-20-9 x+x^2\right )^2}+\frac {432-103 x}{226576 \left (-20-9 x+x^2\right )}\right ) \, dx+\frac {1748}{9} \int \left (\frac {2}{289 (-2+x)}-\frac {1}{784 (-1+x)}+\frac {780+571 x}{476 \left (-20-9 x+x^2\right )^2}+\frac {8664-1279 x}{226576 \left (-20-9 x+x^2\right )}\right ) \, dx-\frac {1148}{3} \int \left (\frac {1}{289 (-2+x)}-\frac {1}{784 (-1+x)}+\frac {220+39 x}{476 \left (-20-9 x+x^2\right )^2}+\frac {3176-495 x}{226576 \left (-20-9 x+x^2\right )}\right ) \, dx\\ &=\frac {4 x}{9}+\frac {8}{63} \log (1-x)+\frac {28}{153} \log (2-x)+\frac {\int \frac {35204776+4745841 x}{-20-9 x+x^2} \, dx}{509796}-\frac {19 \int \frac {920168+73531 x}{-20-9 x+x^2} \, dx}{169932}-\frac {19 \int \frac {-82072+949 x}{-20-9 x+x^2} \, dx}{84966}+\frac {5 \int \frac {432-103 x}{-20-9 x+x^2} \, dx}{14161}+\frac {437 \int \frac {8664-1279 x}{-20-9 x+x^2} \, dx}{509796}+\frac {\int \frac {1293820+700599 x}{\left (-20-9 x+x^2\right )^2} \, dx}{1071}-\frac {41 \int \frac {3176-495 x}{-20-9 x+x^2} \, dx}{24276}-\frac {19 \int \frac {118380+64691 x}{\left (-20-9 x+x^2\right )^2} \, dx}{1071}+\frac {38 \int \frac {11420+5919 x}{\left (-20-9 x+x^2\right )^2} \, dx}{1071}+\frac {20}{119} \int \frac {-60+11 x}{\left (-20-9 x+x^2\right )^2} \, dx+\frac {437 \int \frac {780+571 x}{\left (-20-9 x+x^2\right )^2} \, dx}{1071}-\frac {41}{51} \int \frac {220+39 x}{\left (-20-9 x+x^2\right )^2} \, dx-\frac {160}{9} \int \frac {x \log \left (-2+3 x-x^2\right )}{\left (-20-9 x+x^2\right )^2} \, dx+80 \int \frac {\log \left (-2+3 x-x^2\right )}{\left (-20-9 x+x^2\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.31, size = 55, normalized size = 1.62 \begin {gather*} \frac {1}{9} \left (4 x+\frac {80 x}{-20-9 x+x^2}+\frac {80 \log \left (-2+3 x-x^2\right )}{-20-9 x+x^2}+4 \log \left (2-3 x+x^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 40, normalized size = 1.18 \begin {gather*} \frac {4 \, {\left (x^{3} - 9 \, x^{2} + {\left (x^{2} - 9 \, x\right )} \log \left (-x^{2} + 3 \, x - 2\right )\right )}}{9 \, {\left (x^{2} - 9 \, x - 20\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 51, normalized size = 1.50 \begin {gather*} \frac {4}{9} \, x + \frac {80 \, x}{9 \, {\left (x^{2} - 9 \, x - 20\right )}} + \frac {80 \, \log \left (-x^{2} + 3 \, x - 2\right )}{9 \, {\left (x^{2} - 9 \, x - 20\right )}} + \frac {4}{9} \, \log \left (x^{2} - 3 \, x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 52, normalized size = 1.53
method | result | size |
norman | \(\frac {-36 x -4 \ln \left (-x^{2}+3 x -2\right ) x +\frac {4 \ln \left (-x^{2}+3 x -2\right ) x^{2}}{9}+\frac {4 x^{3}}{9}-80}{x^{2}-9 x -20}\) | \(52\) |
risch | \(\frac {80 \ln \left (-x^{2}+3 x -2\right )}{9 \left (x^{2}-9 x -20\right )}+\frac {\frac {4 \ln \left (x^{2}-3 x +2\right ) x^{2}}{9}+\frac {4 x^{3}}{9}-4 \ln \left (x^{2}-3 x +2\right ) x -4 x^{2}-\frac {80 \ln \left (x^{2}-3 x +2\right )}{9}}{x^{2}-9 x -20}\) | \(82\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.85, size = 161, normalized size = 4.74 \begin {gather*} \frac {4}{9} \, x + \frac {20 \, {\left (17 \, {\left (x^{2} - 9 \, x + 8\right )} \log \left (x - 1\right ) + 14 \, {\left (x^{2} - 9 \, x + 14\right )} \log \left (-x + 2\right )\right )}}{1071 \, {\left (x^{2} - 9 \, x - 20\right )}} - \frac {1270433 \, x + 2339940}{24633 \, {\left (x^{2} - 9 \, x - 20\right )}} + \frac {19 \, {\left (116997 \, x + 217460\right )}}{24633 \, {\left (x^{2} - 9 \, x - 20\right )}} - \frac {38 \, {\left (10873 \, x + 19140\right )}}{24633 \, {\left (x^{2} - 9 \, x - 20\right )}} - \frac {19 \, {\left (957 \, x + 2260\right )}}{1071 \, {\left (x^{2} - 9 \, x - 20\right )}} + \frac {41 \, {\left (113 \, x - 60\right )}}{1173 \, {\left (x^{2} - 9 \, x - 20\right )}} + \frac {20 \, {\left (3 \, x - 140\right )}}{2737 \, {\left (x^{2} - 9 \, x - 20\right )}} + \frac {8}{63} \, \log \left (x - 1\right ) + \frac {28}{153} \, \log \left (x - 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.98, size = 55, normalized size = 1.62 \begin {gather*} \frac {4\,x}{9}+\frac {4\,\ln \left (x^2-3\,x+2\right )}{9}-\frac {80\,\ln \left (-x^2+3\,x-2\right )}{9\,\left (-x^2+9\,x+20\right )}-\frac {80\,x}{9\,\left (-x^2+9\,x+20\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.27, size = 53, normalized size = 1.56 \begin {gather*} \frac {4 x}{9} + \frac {80 x}{9 x^{2} - 81 x - 180} + \frac {4 \log {\left (x^{2} - 3 x + 2 \right )}}{9} + \frac {80 \log {\left (- x^{2} + 3 x - 2 \right )}}{9 x^{2} - 81 x - 180} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________