Optimal. Leaf size=29 \[ \left (-2+e^2+x-\frac {x^2}{5}\right ) \left (x-4 \left (2+\log \left ((3+x) \log ^2(5)\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 89, normalized size of antiderivative = 3.07, number of steps used = 7, number of rules used = 4, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {6742, 1850, 2395, 43} \begin {gather*} -\frac {x^3}{5}+3 x^2-\frac {1}{5} \left (82-5 e^2\right ) x+\frac {22 x}{5}-\frac {1}{10} (5-2 x)^2+\frac {1}{5} (5-2 x)^2 \log \left (x \log ^2(5)+3 \log ^2(5)\right )+\frac {4}{5} \left (34-5 e^2\right ) \log (x+3)-\frac {121}{5} \log (x+3) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 1850
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-5 \left (22+e^2\right )+\left (8+5 e^2\right ) x+21 x^2-3 x^3}{5 (3+x)}+\frac {4}{5} (-5+2 x) \log \left (3 \log ^2(5)+x \log ^2(5)\right )\right ) \, dx\\ &=\frac {1}{5} \int \frac {-5 \left (22+e^2\right )+\left (8+5 e^2\right ) x+21 x^2-3 x^3}{3+x} \, dx+\frac {4}{5} \int (-5+2 x) \log \left (3 \log ^2(5)+x \log ^2(5)\right ) \, dx\\ &=\frac {1}{5} (5-2 x)^2 \log \left (3 \log ^2(5)+x \log ^2(5)\right )+\frac {1}{5} \int \left (-82 \left (1-\frac {5 e^2}{82}\right )+30 x-3 x^2-\frac {4 \left (-34+5 e^2\right )}{3+x}\right ) \, dx-\frac {1}{5} \log ^2(5) \int \frac {(-5+2 x)^2}{3 \log ^2(5)+x \log ^2(5)} \, dx\\ &=-\frac {1}{5} \left (82-5 e^2\right ) x+3 x^2-\frac {x^3}{5}+\frac {4}{5} \left (34-5 e^2\right ) \log (3+x)+\frac {1}{5} (5-2 x)^2 \log \left (3 \log ^2(5)+x \log ^2(5)\right )-\frac {1}{5} \log ^2(5) \int \left (-\frac {22}{\log ^2(5)}+\frac {2 (-5+2 x)}{\log ^2(5)}+\frac {121}{3 \log ^2(5)+x \log ^2(5)}\right ) \, dx\\ &=-\frac {1}{10} (5-2 x)^2+\frac {22 x}{5}-\frac {1}{5} \left (82-5 e^2\right ) x+3 x^2-\frac {x^3}{5}-\frac {121}{5} \log (3+x)+\frac {4}{5} \left (34-5 e^2\right ) \log (3+x)+\frac {1}{5} (5-2 x)^2 \log \left (3 \log ^2(5)+x \log ^2(5)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.08, size = 86, normalized size = 2.97 \begin {gather*} \frac {1}{5} \left (-50 x+5 e^2 x+13 x^2-x^3+100 \log (3+x)-20 e^2 \log (3+x)+4 x^2 \log \left ((3+x) \log ^2(5)\right )-60 \log \left (3 \log ^2(5)+x \log ^2(5)\right )-20 x \log \left (3 \log ^2(5)+x \log ^2(5)\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 41, normalized size = 1.41 \begin {gather*} -\frac {1}{5} \, x^{3} + \frac {13}{5} \, x^{2} + x e^{2} + \frac {4}{5} \, {\left (x^{2} - 5 \, x - 5 \, e^{2} + 10\right )} \log \left ({\left (x + 3\right )} \log \relax (5)^{2}\right ) - 10 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 68, normalized size = 2.34 \begin {gather*} -\frac {1}{5} \, x^{3} + \frac {4}{5} \, x^{2} \log \left (x \log \relax (5)^{2} + 3 \, \log \relax (5)^{2}\right ) + \frac {13}{5} \, x^{2} + x e^{2} - 4 \, x \log \left (x \log \relax (5)^{2} + 3 \, \log \relax (5)^{2}\right ) - 4 \, e^{2} \log \left (x + 3\right ) - 10 \, x + 8 \, \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.43, size = 52, normalized size = 1.79
method | result | size |
risch | \(\left (\frac {4}{5} x^{2}-4 x \right ) \ln \left (\left (3+x \right ) \ln \relax (5)^{2}\right )-\frac {x^{3}}{5}+{\mathrm e}^{2} x +\frac {13 x^{2}}{5}-10 x -4 \ln \left (3+x \right ) {\mathrm e}^{2}+8 \ln \left (3+x \right )\) | \(52\) |
norman | \(\left (-10+{\mathrm e}^{2}\right ) x +\left (8-4 \,{\mathrm e}^{2}\right ) \ln \left (\left (3+x \right ) \ln \relax (5)^{2}\right )+\frac {13 x^{2}}{5}-\frac {x^{3}}{5}-4 \ln \left (\left (3+x \right ) \ln \relax (5)^{2}\right ) x +\frac {4 \ln \left (\left (3+x \right ) \ln \relax (5)^{2}\right ) x^{2}}{5}\) | \(60\) |
derivativedivides | \(\frac {-20 \ln \relax (5)^{2} {\mathrm e}^{2} \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )+5 \,{\mathrm e}^{2} \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )+136 \ln \relax (5)^{2} \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )-44 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right ) \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )-155 x \ln \relax (5)^{2}-465 \ln \relax (5)^{2}+\frac {4 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{2} \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )-2 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{2}}{\ln \relax (5)^{2}}+\frac {24 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{2}}{\ln \relax (5)^{2}}-\frac {\left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{3}}{\ln \relax (5)^{4}}}{5 \ln \relax (5)^{2}}\) | \(206\) |
default | \(\frac {-20 \ln \relax (5)^{2} {\mathrm e}^{2} \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )+5 \,{\mathrm e}^{2} \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )+136 \ln \relax (5)^{2} \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )-44 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right ) \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )-155 x \ln \relax (5)^{2}-465 \ln \relax (5)^{2}+\frac {4 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{2} \ln \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )-2 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{2}}{\ln \relax (5)^{2}}+\frac {24 \left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{2}}{\ln \relax (5)^{2}}-\frac {\left (x \ln \relax (5)^{2}+3 \ln \relax (5)^{2}\right )^{3}}{\ln \relax (5)^{4}}}{5 \ln \relax (5)^{2}}\) | \(206\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 109, normalized size = 3.76 \begin {gather*} -\frac {1}{5} \, x^{3} + \frac {13}{5} \, x^{2} + {\left (x - 3 \, \log \left (x + 3\right )\right )} e^{2} + \frac {4}{5} \, {\left (x^{2} - 6 \, x + 18 \, \log \left (x + 3\right )\right )} \log \left (x \log \relax (5)^{2} + 3 \, \log \relax (5)^{2}\right ) + \frac {4}{5} \, {\left (x - 3 \, \log \left (x + 3\right )\right )} \log \left (x \log \relax (5)^{2} + 3 \, \log \relax (5)^{2}\right ) - e^{2} \log \left (x + 3\right ) - 12 \, \log \left (x + 3\right )^{2} - 24 \, \log \left (x + 3\right ) \log \left (\log \relax (5)\right ) - 10 \, x + 8 \, \log \left (x + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.81, size = 58, normalized size = 2.00 \begin {gather*} 8\,\ln \left (x+3\right )-10\,x-4\,\ln \left (x+3\right )\,{\mathrm {e}}^2+x\,{\mathrm {e}}^2-4\,x\,\ln \left ({\ln \relax (5)}^2\,\left (x+3\right )\right )+\frac {4\,x^2\,\ln \left ({\ln \relax (5)}^2\,\left (x+3\right )\right )}{5}+\frac {13\,x^2}{5}-\frac {x^3}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 49, normalized size = 1.69 \begin {gather*} - \frac {x^{3}}{5} + \frac {13 x^{2}}{5} - x \left (10 - e^{2}\right ) + \left (\frac {4 x^{2}}{5} - 4 x\right ) \log {\left (\left (x + 3\right ) \log {\relax (5 )}^{2} \right )} - 4 \left (-2 + e^{2}\right ) \log {\left (x + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________