3.89.3 ex(1x2log(4x)+log2(4x))(6+3x2+(6+6x)log(4x)3xlog2(4x))xx22xlog(4x)+xlog2(4x)dx

Optimal. Leaf size=19 3ex(x+(1log(4x))2)

________________________________________________________________________________________

Rubi [F]  time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} ex(1x2log(4x)+log2(4x))(6+3x2+(6+6x)log(4x)3xlog2(4x))xx22xlog(4x)+xlog2(4x)dx

Verification is not applicable to the result.

[In]

Int[(E^x*(1 - x - 2*Log[4*x] + Log[4*x]^2)*(6 + 3*x^2 + (-6 + 6*x)*Log[4*x] - 3*x*Log[4*x]^2))/(x - x^2 - 2*x*
Log[4*x] + x*Log[4*x]^2),x]

[Out]

-3*E^x + 3*E^x*x + 6*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, x] + 3*Log[-x]^2 + 6*EulerGamma*Log[x] + 6*(Exp
IntegralE[1, -x] + ExpIntegralEi[x])*Log[x] + 6*E^x*Log[4*x] - 6*ExpIntegralEi[x]*Log[4*x] - 3*Defer[Int][E^x*
Log[4*x]^2, x]

Rubi steps

integral=3ex(2+x2+2(1+x)log(4x)xlog2(4x))xdx=3ex(2+x2+2(1+x)log(4x)xlog2(4x))xdx=3(ex(2+x2)x+2ex(1+x)log(4x)xexlog2(4x))dx=3ex(2+x2)xdx3exlog2(4x)dx+6ex(1+x)log(4x)xdx=6exlog(4x)6Ei(x)log(4x)+3(2exx+exx)dx3exlog2(4x)dx6exEi(x)xdx=6exlog(4x)6Ei(x)log(4x)+3exxdx3exlog2(4x)dx+6exxdx6(exxEi(x)x)dx=3exx+6Ei(x)+6exlog(4x)6Ei(x)log(4x)3exdx3exlog2(4x)dx6exxdx+6Ei(x)xdx=3ex+3exx+6(E1(x)+Ei(x))log(x)+6exlog(4x)6Ei(x)log(4x)3exlog2(4x)dx6E1(x)xdx=3ex+3exx+6x3F3(1,1,1;2,2,2;x)+3log2(x)+6γlog(x)+6(E1(x)+Ei(x))log(x)+6exlog(4x)6Ei(x)log(4x)3exlog2(4x)dx

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 22, normalized size = 1.16 3ex(1+x+2log(4x)log2(4x))

Antiderivative was successfully verified.

[In]

Integrate[(E^x*(1 - x - 2*Log[4*x] + Log[4*x]^2)*(6 + 3*x^2 + (-6 + 6*x)*Log[4*x] - 3*x*Log[4*x]^2))/(x - x^2
- 2*x*Log[4*x] + x*Log[4*x]^2),x]

[Out]

3*E^x*(-1 + x + 2*Log[4*x] - Log[4*x]^2)

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 23, normalized size = 1.21 3e(x+log(log(4x)2x2log(4x)+1))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x*log(4*x)^2+(6*x-6)*log(4*x)+3*x^2+6)*exp(log(log(4*x)^2-2*log(4*x)-x+1)+x)/(x*log(4*x)^2-2*x*l
og(4*x)-x^2+x),x, algorithm="fricas")

[Out]

-3*e^(x + log(log(4*x)^2 - x - 2*log(4*x) + 1))

________________________________________________________________________________________

giac [B]  time = 0.18, size = 46, normalized size = 2.42 12exlog(2)212exlog(2)log(x)3exlog(x)2+3xex+12exlog(2)+6exlog(x)3ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x*log(4*x)^2+(6*x-6)*log(4*x)+3*x^2+6)*exp(log(log(4*x)^2-2*log(4*x)-x+1)+x)/(x*log(4*x)^2-2*x*l
og(4*x)-x^2+x),x, algorithm="giac")

[Out]

-12*e^x*log(2)^2 - 12*e^x*log(2)*log(x) - 3*e^x*log(x)^2 + 3*x*e^x + 12*e^x*log(2) + 6*e^x*log(x) - 3*e^x

________________________________________________________________________________________

maple [A]  time = 0.04, size = 22, normalized size = 1.16




method result size



risch 3(ln(4x)22ln(4x)x+1)ex 22



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-3*x*ln(4*x)^2+(6*x-6)*ln(4*x)+3*x^2+6)*exp(ln(ln(4*x)^2-2*ln(4*x)-x+1)+x)/(x*ln(4*x)^2-2*x*ln(4*x)-x^2+x
),x,method=_RETURNVERBOSE)

[Out]

-3*(ln(4*x)^2-2*ln(4*x)-x+1)*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 33, normalized size = 1.74 3(4log(2)2+2(2log(2)1)log(x)+log(x)2x4log(2)+1)ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x*log(4*x)^2+(6*x-6)*log(4*x)+3*x^2+6)*exp(log(log(4*x)^2-2*log(4*x)-x+1)+x)/(x*log(4*x)^2-2*x*l
og(4*x)-x^2+x),x, algorithm="maxima")

[Out]

-3*(4*log(2)^2 + 2*(2*log(2) - 1)*log(x) + log(x)^2 - x - 4*log(2) + 1)*e^x

________________________________________________________________________________________

mupad [B]  time = 7.07, size = 46, normalized size = 2.42 6exln(x)12exln(2)23ex3exln(x)2+12exln(2)+3xex12exln(2)ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x + log(log(4*x)^2 - 2*log(4*x) - x + 1))*(3*x^2 - 3*x*log(4*x)^2 + log(4*x)*(6*x - 6) + 6))/(x - 2*x
*log(4*x) + x*log(4*x)^2 - x^2),x)

[Out]

6*exp(x)*log(x) - 12*exp(x)*log(2)^2 - 3*exp(x) - 3*exp(x)*log(x)^2 + 12*exp(x)*log(2) + 3*x*exp(x) - 12*exp(x
)*log(2)*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.40, size = 22, normalized size = 1.16 (3x3log(4x)2+6log(4x)3)ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-3*x*ln(4*x)**2+(6*x-6)*ln(4*x)+3*x**2+6)*exp(ln(ln(4*x)**2-2*ln(4*x)-x+1)+x)/(x*ln(4*x)**2-2*x*ln(
4*x)-x**2+x),x)

[Out]

(3*x - 3*log(4*x)**2 + 6*log(4*x) - 3)*exp(x)

________________________________________________________________________________________