Optimal. Leaf size=19 \[ -3 e^x \left (-x+(1-\log (4 x))^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x \left (1-x-2 \log (4 x)+\log ^2(4 x)\right ) \left (6+3 x^2+(-6+6 x) \log (4 x)-3 x \log ^2(4 x)\right )}{x-x^2-2 x \log (4 x)+x \log ^2(4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 e^x \left (2+x^2+2 (-1+x) \log (4 x)-x \log ^2(4 x)\right )}{x} \, dx\\ &=3 \int \frac {e^x \left (2+x^2+2 (-1+x) \log (4 x)-x \log ^2(4 x)\right )}{x} \, dx\\ &=3 \int \left (\frac {e^x \left (2+x^2\right )}{x}+\frac {2 e^x (-1+x) \log (4 x)}{x}-e^x \log ^2(4 x)\right ) \, dx\\ &=3 \int \frac {e^x \left (2+x^2\right )}{x} \, dx-3 \int e^x \log ^2(4 x) \, dx+6 \int \frac {e^x (-1+x) \log (4 x)}{x} \, dx\\ &=6 e^x \log (4 x)-6 \text {Ei}(x) \log (4 x)+3 \int \left (\frac {2 e^x}{x}+e^x x\right ) \, dx-3 \int e^x \log ^2(4 x) \, dx-6 \int \frac {e^x-\text {Ei}(x)}{x} \, dx\\ &=6 e^x \log (4 x)-6 \text {Ei}(x) \log (4 x)+3 \int e^x x \, dx-3 \int e^x \log ^2(4 x) \, dx+6 \int \frac {e^x}{x} \, dx-6 \int \left (\frac {e^x}{x}-\frac {\text {Ei}(x)}{x}\right ) \, dx\\ &=3 e^x x+6 \text {Ei}(x)+6 e^x \log (4 x)-6 \text {Ei}(x) \log (4 x)-3 \int e^x \, dx-3 \int e^x \log ^2(4 x) \, dx-6 \int \frac {e^x}{x} \, dx+6 \int \frac {\text {Ei}(x)}{x} \, dx\\ &=-3 e^x+3 e^x x+6 (E_1(-x)+\text {Ei}(x)) \log (x)+6 e^x \log (4 x)-6 \text {Ei}(x) \log (4 x)-3 \int e^x \log ^2(4 x) \, dx-6 \int \frac {E_1(-x)}{x} \, dx\\ &=-3 e^x+3 e^x x+6 x \, _3F_3(1,1,1;2,2,2;x)+3 \log ^2(-x)+6 \gamma \log (x)+6 (E_1(-x)+\text {Ei}(x)) \log (x)+6 e^x \log (4 x)-6 \text {Ei}(x) \log (4 x)-3 \int e^x \log ^2(4 x) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 22, normalized size = 1.16 \begin {gather*} 3 e^x \left (-1+x+2 \log (4 x)-\log ^2(4 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 23, normalized size = 1.21 \begin {gather*} -3 \, e^{\left (x + \log \left (\log \left (4 \, x\right )^{2} - x - 2 \, \log \left (4 \, x\right ) + 1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 46, normalized size = 2.42 \begin {gather*} -12 \, e^{x} \log \relax (2)^{2} - 12 \, e^{x} \log \relax (2) \log \relax (x) - 3 \, e^{x} \log \relax (x)^{2} + 3 \, x e^{x} + 12 \, e^{x} \log \relax (2) + 6 \, e^{x} \log \relax (x) - 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 22, normalized size = 1.16
method | result | size |
risch | \(-3 \left (\ln \left (4 x \right )^{2}-2 \ln \left (4 x \right )-x +1\right ) {\mathrm e}^{x}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 33, normalized size = 1.74 \begin {gather*} -3 \, {\left (4 \, \log \relax (2)^{2} + 2 \, {\left (2 \, \log \relax (2) - 1\right )} \log \relax (x) + \log \relax (x)^{2} - x - 4 \, \log \relax (2) + 1\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 7.07, size = 46, normalized size = 2.42 \begin {gather*} 6\,{\mathrm {e}}^x\,\ln \relax (x)-12\,{\mathrm {e}}^x\,{\ln \relax (2)}^2-3\,{\mathrm {e}}^x-3\,{\mathrm {e}}^x\,{\ln \relax (x)}^2+12\,{\mathrm {e}}^x\,\ln \relax (2)+3\,x\,{\mathrm {e}}^x-12\,{\mathrm {e}}^x\,\ln \relax (2)\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 22, normalized size = 1.16 \begin {gather*} \left (3 x - 3 \log {\left (4 x \right )}^{2} + 6 \log {\left (4 x \right )} - 3\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________