3.89.5
Optimal. Leaf size=21
________________________________________________________________________________________
Rubi [A] time = 0.31, antiderivative size = 19, normalized size of antiderivative = 0.90,
number of steps used = 3, number of rules used = 3, integrand size = 69, = 0.043, Rules used =
{12, 6684, 6686}
Antiderivative was successfully verified.
[In]
Int[(4*Log[(5 + Log[4] - 2*Log[Log[-1 + Log[x]]])/2])/((5*x + x*Log[4] + (-5*x - x*Log[4])*Log[x])*Log[-1 + Lo
g[x]] + (-2*x + 2*x*Log[x])*Log[-1 + Log[x]]*Log[Log[-1 + Log[x]]]),x]
[Out]
Log[(5 + Log[4] - 2*Log[Log[-1 + Log[x]]])/2]^2
Rule 12
Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] && !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]
Rule 6684
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /; !Fa
lseQ[q]]
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 24, normalized size = 1.14
Antiderivative was successfully verified.
[In]
Integrate[(4*Log[(5 + Log[4] - 2*Log[Log[-1 + Log[x]]])/2])/((5*x + x*Log[4] + (-5*x - x*Log[4])*Log[x])*Log[-
1 + Log[x]] + (-2*x + 2*x*Log[x])*Log[-1 + Log[x]]*Log[Log[-1 + Log[x]]]),x]
[Out]
Log[(5*(1 + (2*Log[2])/5))/2 - Log[Log[-1 + Log[x]]]]^2
________________________________________________________________________________________
fricas [A] time = 0.66, size = 15, normalized size = 0.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(4*log(-log(log(log(x)-1))+log(2)+5/2)/((2*x*log(x)-2*x)*log(log(x)-1)*log(log(log(x)-1))+((-2*x*log(
2)-5*x)*log(x)+2*x*log(2)+5*x)*log(log(x)-1)),x, algorithm="fricas")
[Out]
log(log(2) - log(log(log(x) - 1)) + 5/2)^2
________________________________________________________________________________________
giac [A] time = 0.18, size = 15, normalized size = 0.71
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(4*log(-log(log(log(x)-1))+log(2)+5/2)/((2*x*log(x)-2*x)*log(log(x)-1)*log(log(log(x)-1))+((-2*x*log(
2)-5*x)*log(x)+2*x*log(2)+5*x)*log(log(x)-1)),x, algorithm="giac")
[Out]
log(log(2) - log(log(log(x) - 1)) + 5/2)^2
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(4*ln(-ln(ln(ln(x)-1))+ln(2)+5/2)/((2*x*ln(x)-2*x)*ln(ln(x)-1)*ln(ln(ln(x)-1))+((-2*x*ln(2)-5*x)*ln(x)+2*x*
ln(2)+5*x)*ln(ln(x)-1)),x,method=_RETURNVERBOSE)
[Out]
ln(-ln(ln(ln(x)-1))+ln(2)+5/2)^2
________________________________________________________________________________________
maxima [B] time = 0.46, size = 50, normalized size = 2.38
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(4*log(-log(log(log(x)-1))+log(2)+5/2)/((2*x*log(x)-2*x)*log(log(x)-1)*log(log(log(x)-1))+((-2*x*log(
2)-5*x)*log(x)+2*x*log(2)+5*x)*log(log(x)-1)),x, algorithm="maxima")
[Out]
2*log(log(2) - log(log(log(x) - 1)) + 5/2)*log(-2*log(2) + 2*log(log(log(x) - 1)) - 5) - log(-2*log(2) + 2*log
(log(log(x) - 1)) - 5)^2
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((4*log(log(2) - log(log(log(x) - 1)) + 5/2))/(log(log(x) - 1)*(5*x + 2*x*log(2) - log(x)*(5*x + 2*x*log(2)
)) - log(log(log(x) - 1))*log(log(x) - 1)*(2*x - 2*x*log(x))),x)
[Out]
int((4*log(log(2) - log(log(log(x) - 1)) + 5/2))/(log(log(x) - 1)*(5*x + 2*x*log(2) - log(x)*(5*x + 2*x*log(2)
)) - log(log(log(x) - 1))*log(log(x) - 1)*(2*x - 2*x*log(x))), x)
________________________________________________________________________________________
sympy [A] time = 4.45, size = 17, normalized size = 0.81
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(4*ln(-ln(ln(ln(x)-1))+ln(2)+5/2)/((2*x*ln(x)-2*x)*ln(ln(x)-1)*ln(ln(ln(x)-1))+((-2*x*ln(2)-5*x)*ln(x
)+2*x*ln(2)+5*x)*ln(ln(x)-1)),x)
[Out]
log(-log(log(log(x) - 1)) + log(2) + 5/2)**2
________________________________________________________________________________________