3.89.5 4log(12(5+log(4)2log(log(1+log(x)))))(5x+xlog(4)+(5xxlog(4))log(x))log(1+log(x))+(2x+2xlog(x))log(1+log(x))log(log(1+log(x)))dx

Optimal. Leaf size=21 log2(2+12(1+log(4))log(log(1+log(x))))

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 19, normalized size of antiderivative = 0.90, number of steps used = 3, number of rules used = 3, integrand size = 69, number of rulesintegrand size = 0.043, Rules used = {12, 6684, 6686} log2(12(2log(log(log(x)1))+5+log(4)))

Antiderivative was successfully verified.

[In]

Int[(4*Log[(5 + Log[4] - 2*Log[Log[-1 + Log[x]]])/2])/((5*x + x*Log[4] + (-5*x - x*Log[4])*Log[x])*Log[-1 + Lo
g[x]] + (-2*x + 2*x*Log[x])*Log[-1 + Log[x]]*Log[Log[-1 + Log[x]]]),x]

[Out]

Log[(5 + Log[4] - 2*Log[Log[-1 + Log[x]]])/2]^2

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6684

Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /;  !Fa
lseQ[q]]

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

integral=4log(12(5+log(4)2log(log(1+log(x)))))(5x+xlog(4)+(5xxlog(4))log(x))log(1+log(x))+(2x+2xlog(x))log(1+log(x))log(log(1+log(x)))dx=(4Subst(log(12(5+log(4)2log(log(1+x))))(1+x)log(1+x)(5+log(4)2log(log(1+x)))dx,x,log(x)))=log2(12(5+log(4)2log(log(1+log(x)))))

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 24, normalized size = 1.14 log2(52(1+2log(2)5)log(log(1+log(x))))

Antiderivative was successfully verified.

[In]

Integrate[(4*Log[(5 + Log[4] - 2*Log[Log[-1 + Log[x]]])/2])/((5*x + x*Log[4] + (-5*x - x*Log[4])*Log[x])*Log[-
1 + Log[x]] + (-2*x + 2*x*Log[x])*Log[-1 + Log[x]]*Log[Log[-1 + Log[x]]]),x]

[Out]

Log[(5*(1 + (2*Log[2])/5))/2 - Log[Log[-1 + Log[x]]]]^2

________________________________________________________________________________________

fricas [A]  time = 0.66, size = 15, normalized size = 0.71 log(log(2)log(log(log(x)1))+52)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*log(-log(log(log(x)-1))+log(2)+5/2)/((2*x*log(x)-2*x)*log(log(x)-1)*log(log(log(x)-1))+((-2*x*log(
2)-5*x)*log(x)+2*x*log(2)+5*x)*log(log(x)-1)),x, algorithm="fricas")

[Out]

log(log(2) - log(log(log(x) - 1)) + 5/2)^2

________________________________________________________________________________________

giac [A]  time = 0.18, size = 15, normalized size = 0.71 log(log(2)log(log(log(x)1))+52)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*log(-log(log(log(x)-1))+log(2)+5/2)/((2*x*log(x)-2*x)*log(log(x)-1)*log(log(log(x)-1))+((-2*x*log(
2)-5*x)*log(x)+2*x*log(2)+5*x)*log(log(x)-1)),x, algorithm="giac")

[Out]

log(log(2) - log(log(log(x) - 1)) + 5/2)^2

________________________________________________________________________________________

maple [A]  time = 0.04, size = 16, normalized size = 0.76




method result size



risch ln(ln(ln(ln(x)1))+ln(2)+52)2 16



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(4*ln(-ln(ln(ln(x)-1))+ln(2)+5/2)/((2*x*ln(x)-2*x)*ln(ln(x)-1)*ln(ln(ln(x)-1))+((-2*x*ln(2)-5*x)*ln(x)+2*x*
ln(2)+5*x)*ln(ln(x)-1)),x,method=_RETURNVERBOSE)

[Out]

ln(-ln(ln(ln(x)-1))+ln(2)+5/2)^2

________________________________________________________________________________________

maxima [B]  time = 0.46, size = 50, normalized size = 2.38 2log(log(2)log(log(log(x)1))+52)log(2log(2)+2log(log(log(x)1))5)log(2log(2)+2log(log(log(x)1))5)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*log(-log(log(log(x)-1))+log(2)+5/2)/((2*x*log(x)-2*x)*log(log(x)-1)*log(log(log(x)-1))+((-2*x*log(
2)-5*x)*log(x)+2*x*log(2)+5*x)*log(log(x)-1)),x, algorithm="maxima")

[Out]

2*log(log(2) - log(log(log(x) - 1)) + 5/2)*log(-2*log(2) + 2*log(log(log(x) - 1)) - 5) - log(-2*log(2) + 2*log
(log(log(x) - 1)) - 5)^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.05 4ln(ln(2)ln(ln(ln(x)1))+52)ln(ln(x)1)(5x+2xln(2)ln(x)(5x+2xln(2)))ln(ln(ln(x)1))ln(ln(x)1)(2x2xln(x))dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*log(log(2) - log(log(log(x) - 1)) + 5/2))/(log(log(x) - 1)*(5*x + 2*x*log(2) - log(x)*(5*x + 2*x*log(2)
)) - log(log(log(x) - 1))*log(log(x) - 1)*(2*x - 2*x*log(x))),x)

[Out]

int((4*log(log(2) - log(log(log(x) - 1)) + 5/2))/(log(log(x) - 1)*(5*x + 2*x*log(2) - log(x)*(5*x + 2*x*log(2)
)) - log(log(log(x) - 1))*log(log(x) - 1)*(2*x - 2*x*log(x))), x)

________________________________________________________________________________________

sympy [A]  time = 4.45, size = 17, normalized size = 0.81 log(log(log(log(x)1))+log(2)+52)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*ln(-ln(ln(ln(x)-1))+ln(2)+5/2)/((2*x*ln(x)-2*x)*ln(ln(x)-1)*ln(ln(ln(x)-1))+((-2*x*ln(2)-5*x)*ln(x
)+2*x*ln(2)+5*x)*ln(ln(x)-1)),x)

[Out]

log(-log(log(log(x) - 1)) + log(2) + 5/2)**2

________________________________________________________________________________________