Optimal. Leaf size=32 \[ \frac {e^x \left (-\frac {e^{5-x}}{4}-2 x+x^2\right )}{2 x \log (4)} \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 42, normalized size of antiderivative = 1.31, number of steps used = 5, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 6688, 2176, 2194} \begin {gather*} -\frac {e^x (1-x)}{2 \log (4)}-\frac {e^x}{2 \log (4)}-\frac {e^5}{8 x \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {e^x \left (e^{5-x}-4 x^2+4 x^3\right )}{x^2} \, dx}{8 \log (4)}\\ &=\frac {\int \left (4 e^x (-1+x)+\frac {e^5}{x^2}\right ) \, dx}{8 \log (4)}\\ &=-\frac {e^5}{8 x \log (4)}+\frac {\int e^x (-1+x) \, dx}{2 \log (4)}\\ &=-\frac {e^x (1-x)}{2 \log (4)}-\frac {e^5}{8 x \log (4)}-\frac {\int e^x \, dx}{2 \log (4)}\\ &=-\frac {e^x}{2 \log (4)}-\frac {e^x (1-x)}{2 \log (4)}-\frac {e^5}{8 x \log (4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 26, normalized size = 0.81 \begin {gather*} \frac {-\frac {e^5}{x}+e^x (-8+4 x)}{8 \log (4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 25, normalized size = 0.78 \begin {gather*} \frac {4 \, {\left (x^{2} - 2 \, x\right )} e^{x} - e^{5}}{16 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 26, normalized size = 0.81 \begin {gather*} \frac {4 \, x^{2} e^{x} - 8 \, x e^{x} - e^{5}}{16 \, x \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 24, normalized size = 0.75
method | result | size |
default | \(\frac {-\frac {{\mathrm e}^{5}}{x}+4 \,{\mathrm e}^{x} x -8 \,{\mathrm e}^{x}}{16 \ln \relax (2)}\) | \(24\) |
risch | \(-\frac {{\mathrm e}^{5}}{16 \ln \relax (2) x}+\frac {\left (4 x -8\right ) {\mathrm e}^{x}}{16 \ln \relax (2)}\) | \(26\) |
norman | \(\frac {\left (-\frac {x \,{\mathrm e}^{2 x}}{2 \ln \relax (2)}+\frac {x^{2} {\mathrm e}^{2 x}}{4 \ln \relax (2)}-\frac {{\mathrm e}^{5} {\mathrm e}^{x}}{16 \ln \relax (2)}\right ) {\mathrm e}^{-x}}{x}\) | \(44\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 25, normalized size = 0.78 \begin {gather*} \frac {4 \, {\left (x - 1\right )} e^{x} - \frac {e^{5}}{x} - 4 \, e^{x}}{16 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 23, normalized size = 0.72 \begin {gather*} \frac {{\mathrm {e}}^x\,\left (x-2\right )}{4\,\ln \relax (2)}-\frac {{\mathrm {e}}^5}{16\,x\,\ln \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.62 \begin {gather*} \frac {\left (x - 2\right ) e^{x}}{4 \log {\relax (2 )}} - \frac {e^{5}}{16 x \log {\relax (2 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________