3.89.23 16+x24ee9x2192x396x44x2dx

Optimal. Leaf size=27 4x+x4(3+x)(ee9+8x2)

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 30, normalized size of antiderivative = 1.11, number of steps used = 4, number of rules used = 3, integrand size = 32, number of rulesintegrand size = 0.094, Rules used = {6, 12, 14} 8x324x2+14(14ee9)x+4x

Antiderivative was successfully verified.

[In]

Int[(-16 + x^2 - 4*E^E^9*x^2 - 192*x^3 - 96*x^4)/(4*x^2),x]

[Out]

4/x + ((1 - 4*E^E^9)*x)/4 - 24*x^2 - 8*x^3

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

integral=16+(14ee9)x2192x396x44x2dx=1416+(14ee9)x2192x396x4x2dx=14(14ee916x2192x96x2)dx=4x+14(14ee9)x24x28x3

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 29, normalized size = 1.07 4x+x4ee9x24x28x3

Antiderivative was successfully verified.

[In]

Integrate[(-16 + x^2 - 4*E^E^9*x^2 - 192*x^3 - 96*x^4)/(4*x^2),x]

[Out]

4/x + x/4 - E^E^9*x - 24*x^2 - 8*x^3

________________________________________________________________________________________

fricas [A]  time = 0.49, size = 30, normalized size = 1.11 32x4+96x3+4x2e(e9)x2164x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x^2*exp(exp(9))-96*x^4-192*x^3+x^2-16)/x^2,x, algorithm="fricas")

[Out]

-1/4*(32*x^4 + 96*x^3 + 4*x^2*e^(e^9) - x^2 - 16)/x

________________________________________________________________________________________

giac [A]  time = 0.21, size = 25, normalized size = 0.93 8x324x2xe(e9)+14x+4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x^2*exp(exp(9))-96*x^4-192*x^3+x^2-16)/x^2,x, algorithm="giac")

[Out]

-8*x^3 - 24*x^2 - x*e^(e^9) + 1/4*x + 4/x

________________________________________________________________________________________

maple [A]  time = 0.06, size = 26, normalized size = 0.96




method result size



default 8x324x2xee9+x4+4x 26
risch 8x324x2xee9+x4+4x 26
norman 4+(ee9+14)x224x38x4x 28
gosper 32x4+4x2ee9+96x3x2164x 31



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(-4*x^2*exp(exp(9))-96*x^4-192*x^3+x^2-16)/x^2,x,method=_RETURNVERBOSE)

[Out]

-8*x^3-24*x^2-x*exp(exp(9))+1/4*x+4/x

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 26, normalized size = 0.96 8x324x214x(4e(e9)1)+4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x^2*exp(exp(9))-96*x^4-192*x^3+x^2-16)/x^2,x, algorithm="maxima")

[Out]

-8*x^3 - 24*x^2 - 1/4*x*(4*e^(e^9) - 1) + 4/x

________________________________________________________________________________________

mupad [B]  time = 0.05, size = 24, normalized size = 0.89 4xx(ee914)24x28x3

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x^2*exp(exp(9)) - x^2/4 + 48*x^3 + 24*x^4 + 4)/x^2,x)

[Out]

4/x - x*(exp(exp(9)) - 1/4) - 24*x^2 - 8*x^3

________________________________________________________________________________________

sympy [A]  time = 0.09, size = 24, normalized size = 0.89 8x324x2x(1+4ee9)4+4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(-4*x**2*exp(exp(9))-96*x**4-192*x**3+x**2-16)/x**2,x)

[Out]

-8*x**3 - 24*x**2 - x*(-1 + 4*exp(exp(9)))/4 + 4/x

________________________________________________________________________________________