3.89.25 e1e4+ee4+x2(1+2x2)x2dx

Optimal. Leaf size=21 e1e4+ee4+x2x

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 28, number of rulesintegrand size = 0.036, Rules used = {2288} ex2+ee4e4+1x

Antiderivative was successfully verified.

[In]

Int[(E^(1 - E^4 + E^E^4 + x^2)*(-1 + 2*x^2))/x^2,x]

[Out]

E^(1 - E^4 + E^E^4 + x^2)/x

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rubi steps

integral=e1e4+ee4+x2x

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 21, normalized size = 1.00 e1e4+ee4+x2x

Antiderivative was successfully verified.

[In]

Integrate[(E^(1 - E^4 + E^E^4 + x^2)*(-1 + 2*x^2))/x^2,x]

[Out]

E^(1 - E^4 + E^E^4 + x^2)/x

________________________________________________________________________________________

fricas [A]  time = 0.51, size = 17, normalized size = 0.81 e(x2e4+e(e4)log(x)+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2-1)*exp(-log(x)+exp(exp(4))-exp(4)+x^2+1)/x,x, algorithm="fricas")

[Out]

e^(x^2 - e^4 + e^(e^4) - log(x) + 1)

________________________________________________________________________________________

giac [A]  time = 0.13, size = 17, normalized size = 0.81 e(x2e4+e(e4)+1)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2-1)*exp(-log(x)+exp(exp(4))-exp(4)+x^2+1)/x,x, algorithm="giac")

[Out]

e^(x^2 - e^4 + e^(e^4) + 1)/x

________________________________________________________________________________________

maple [A]  time = 0.03, size = 18, normalized size = 0.86




method result size



gosper eln(x)+ee4e4+x2+1 18
norman eln(x)+ee4e4+x2+1 18
risch e1+ee4e4+x2x 18
default eeee4ee4πerfi(x)eeee4ee4(ex2x+πerfi(x)) 48



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*x^2-1)*exp(-ln(x)+exp(exp(4))-exp(4)+x^2+1)/x,x,method=_RETURNVERBOSE)

[Out]

exp(-ln(x)+exp(exp(4))-exp(4)+x^2+1)

________________________________________________________________________________________

maxima [C]  time = 0.41, size = 49, normalized size = 2.33 iπerf(ix)e(e4+e(e4)+1)+x2e(e4+e(e4)+1)Γ(12,x2)2x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x^2-1)*exp(-log(x)+exp(exp(4))-exp(4)+x^2+1)/x,x, algorithm="maxima")

[Out]

-I*sqrt(pi)*erf(I*x)*e^(-e^4 + e^(e^4) + 1) + 1/2*sqrt(-x^2)*e^(-e^4 + e^(e^4) + 1)*gamma(-1/2, -x^2)/x

________________________________________________________________________________________

mupad [B]  time = 5.36, size = 19, normalized size = 0.90 ee4eee4ex2ex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(exp(exp(4)) - exp(4) - log(x) + x^2 + 1)*(2*x^2 - 1))/x,x)

[Out]

(exp(-exp(4))*exp(exp(exp(4)))*exp(x^2)*exp(1))/x

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 15, normalized size = 0.71 ex2e4+1+ee4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*x**2-1)*exp(-ln(x)+exp(exp(4))-exp(4)+x**2+1)/x,x)

[Out]

exp(x**2 - exp(4) + 1 + exp(exp(4)))/x

________________________________________________________________________________________