3.89.29
Optimal. Leaf size=29
________________________________________________________________________________________
Rubi [A] time = 0.54, antiderivative size = 34, normalized size of antiderivative = 1.17,
number of steps used = 1, number of rules used = 1, integrand size = 103, = 0.010, Rules used
= {6686}
Antiderivative was successfully verified.
[In]
Int[((-256*x^5 + E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*(2 - 4*x^2 - 4*Log[5]))*Log[E^((-1 + x - 2*x^2 + 2*Log[
5])/(2*x)) - 16*x^4]^3)/(E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*x^2 - 16*x^6),x]
[Out]
Log[5^x^(-1)/E^((1 - x + 2*x^2)/(2*x)) - 16*x^4]^4
Rule 6686
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 28, normalized size = 0.97
Antiderivative was successfully verified.
[In]
Integrate[((-256*x^5 + E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*(2 - 4*x^2 - 4*Log[5]))*Log[E^((-1 + x - 2*x^2 +
2*Log[5])/(2*x)) - 16*x^4]^3)/(E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*x^2 - 16*x^6),x]
[Out]
Log[E^((-1 + x - 2*x^2 + Log[25])/(2*x)) - 16*x^4]^4
________________________________________________________________________________________
fricas [A] time = 0.56, size = 29, normalized size = 1.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(5)-4*x^2+2)*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-256*x^5)*log(exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16
*x^4)^3/(x^2*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16*x^6),x, algorithm="fricas")
[Out]
log(-16*x^4 + e^(-1/2*(2*x^2 - x - 2*log(5) + 1)/x))^4
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(5)-4*x^2+2)*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-256*x^5)*log(exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16
*x^4)^3/(x^2*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16*x^6),x, algorithm="giac")
[Out]
integrate(2*(128*x^5 + (2*x^2 + 2*log(5) - 1)*e^(-1/2*(2*x^2 - x - 2*log(5) + 1)/x))*log(-16*x^4 + e^(-1/2*(2*
x^2 - x - 2*log(5) + 1)/x))^3/(16*x^6 - x^2*e^(-1/2*(2*x^2 - x - 2*log(5) + 1)/x)), x)
________________________________________________________________________________________
maple [A] time = 0.06, size = 30, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*ln(5)-4*x^2+2)*exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-256*x^5)*ln(exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-16*x^4)^3/(x
^2*exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-16*x^6),x,method=_RETURNVERBOSE)
[Out]
ln(exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-16*x^4)^4-3/2
________________________________________________________________________________________
maxima [B] time = 0.77, size = 574, normalized size = 19.79
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*log(5)-4*x^2+2)*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-256*x^5)*log(exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16
*x^4)^3/(x^2*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16*x^6),x, algorithm="maxima")
[Out]
-2*((2*x^2 + 1)/x - 2*log(-(16*x^4*e^(x + 1/2/x) - e^(log(5)/x + 1/2))*e^(-1/2)))*log(-16*x^4 + e^(-1/2*(2*x^2
- x - 2*log(5) + 1)/x))^3 - 3/2*(4*x^4 + 4*x^2*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^2 + 4*x^3 - 4*
(2*x^3 + x^2 + x)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2)) + 2*x + 1)*log(-16*x^4 + e^(-1/2*(2*x^2 - x
- 2*log(5) + 1)/x))^2/x^2 - 1/2*(8*x^6 - 8*x^3*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^3 + 12*x^5 - 12
*x^4 + 12*(2*x^4 + x^3 + x^2)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^2 - 6*x^2 - 6*(4*x^5 + 4*x^4 + 2
*x^2 + x)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2)) + 3*x + 1)*log(-16*x^4 + e^(-1/2*(2*x^2 - x - 2*log(
5) + 1)/x))/x^3 - 1/16*(16*x^8 + 16*x^4*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^4 + 32*x^7 - 64*x^6 -
48*x^5 - 32*(2*x^5 + x^4 + x^3)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^3 - 24*x^3 + 24*(4*x^6 + 4*x^5
+ 2*x^3 + x^2)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^2 - 16*x^2 - 8*(8*x^7 + 12*x^6 - 12*x^5 - 6*x^
3 + 3*x^2 + x)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2)) + 4*x + 1)/x^4
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(log(exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^4)^3*(exp((x/2 + log(5) - x^2 - 1/2)/x)*(4*log(5) + 4*x^2 -
2) + 256*x^5))/(x^2*exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^6),x)
[Out]
int(-(log(exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^4)^3*(exp((x/2 + log(5) - x^2 - 1/2)/x)*(4*log(5) + 4*x^2 -
2) + 256*x^5))/(x^2*exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^6), x)
________________________________________________________________________________________
sympy [A] time = 0.63, size = 24, normalized size = 0.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*ln(5)-4*x**2+2)*exp(1/2*(2*ln(5)-2*x**2+x-1)/x)-256*x**5)*ln(exp(1/2*(2*ln(5)-2*x**2+x-1)/x)-16
*x**4)**3/(x**2*exp(1/2*(2*ln(5)-2*x**2+x-1)/x)-16*x**6),x)
[Out]
log(-16*x**4 + exp((-x**2 + x/2 - 1/2 + log(5))/x))**4
________________________________________________________________________________________