3.89.29 (256x5+e1+x2x2+2log(5)2x(24x24log(5)))log3(e1+x2x2+2log(5)2x16x4)e1+x2x2+2log(5)2xx216x6dx

Optimal. Leaf size=29 log4(ex+1+x+2log(5)2x16x4)

________________________________________________________________________________________

Rubi [A]  time = 0.54, antiderivative size = 34, normalized size of antiderivative = 1.17, number of steps used = 1, number of rules used = 1, integrand size = 103, number of rulesintegrand size = 0.010, Rules used = {6686} log4(51xe2x2x+12x16x4)

Antiderivative was successfully verified.

[In]

Int[((-256*x^5 + E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*(2 - 4*x^2 - 4*Log[5]))*Log[E^((-1 + x - 2*x^2 + 2*Log[
5])/(2*x)) - 16*x^4]^3)/(E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*x^2 - 16*x^6),x]

[Out]

Log[5^x^(-1)/E^((1 - x + 2*x^2)/(2*x)) - 16*x^4]^4

Rule 6686

Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[(q*y^(m + 1))/(m + 1), x] /;  !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]

Rubi steps

integral=log4(51xe1x+2x22x16x4)

________________________________________________________________________________________

Mathematica [A]  time = 0.10, size = 28, normalized size = 0.97 log4(e1+x2x2+log(25)2x16x4)

Antiderivative was successfully verified.

[In]

Integrate[((-256*x^5 + E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*(2 - 4*x^2 - 4*Log[5]))*Log[E^((-1 + x - 2*x^2 +
2*Log[5])/(2*x)) - 16*x^4]^3)/(E^((-1 + x - 2*x^2 + 2*Log[5])/(2*x))*x^2 - 16*x^6),x]

[Out]

Log[E^((-1 + x - 2*x^2 + Log[25])/(2*x)) - 16*x^4]^4

________________________________________________________________________________________

fricas [A]  time = 0.56, size = 29, normalized size = 1.00 log(16x4+e(2x2x2log(5)+12x))4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(5)-4*x^2+2)*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-256*x^5)*log(exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16
*x^4)^3/(x^2*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16*x^6),x, algorithm="fricas")

[Out]

log(-16*x^4 + e^(-1/2*(2*x^2 - x - 2*log(5) + 1)/x))^4

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 2(128x5+(2x2+2log(5)1)e(2x2x2log(5)+12x))log(16x4+e(2x2x2log(5)+12x))316x6x2e(2x2x2log(5)+12x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(5)-4*x^2+2)*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-256*x^5)*log(exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16
*x^4)^3/(x^2*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16*x^6),x, algorithm="giac")

[Out]

integrate(2*(128*x^5 + (2*x^2 + 2*log(5) - 1)*e^(-1/2*(2*x^2 - x - 2*log(5) + 1)/x))*log(-16*x^4 + e^(-1/2*(2*
x^2 - x - 2*log(5) + 1)/x))^3/(16*x^6 - x^2*e^(-1/2*(2*x^2 - x - 2*log(5) + 1)/x)), x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 30, normalized size = 1.03




method result size



risch ln(e2ln(5)2x2+x12x16x4)432 30



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*ln(5)-4*x^2+2)*exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-256*x^5)*ln(exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-16*x^4)^3/(x
^2*exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-16*x^6),x,method=_RETURNVERBOSE)

[Out]

ln(exp(1/2*(2*ln(5)-2*x^2+x-1)/x)-16*x^4)^4-3/2

________________________________________________________________________________________

maxima [B]  time = 0.77, size = 574, normalized size = 19.79 2(2x2+1x2log((16x4e(x+12x)e(log(5)x+12))e(12)))log(16x4+e(2x2x2log(5)+12x))33(4x4+4x2log(16x4e(x+12x)+e(log(5)x+12))2+4x34(2x3+x2+x)log(16x4e(x+12x)+e(log(5)x+12))+2x+1)log(16x4+e(2x2x2log(5)+12x))22x2(8x68x3log(16x4e(x+12x)+e(log(5)x+12))3+12x512x4+12(2x4+x3+x2)log(16x4e(x+12x)+e(log(5)x+12))26x26(4x5+4x4+2x2+x)log(16x4e(x+12x)+e(log(5)x+12))+3x+1)log(16x4+e(2x2x2log(5)+12x))2x316x8+16x4log(16x4e(x+12x)+e(log(5)x+12))4+32x764x648x532(2x5+x4+x3)log(16x4e(x+12x)+e(log(5)x+12))324x3+24(4x6+4x5+2x3+x2)log(16x4e(x+12x)+e(log(5)x+12))216x28(8x7+12x612x56x3+3x2+x)log(16x4e(x+12x)+e(log(5)x+12))+4x+116x4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*log(5)-4*x^2+2)*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-256*x^5)*log(exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16
*x^4)^3/(x^2*exp(1/2*(2*log(5)-2*x^2+x-1)/x)-16*x^6),x, algorithm="maxima")

[Out]

-2*((2*x^2 + 1)/x - 2*log(-(16*x^4*e^(x + 1/2/x) - e^(log(5)/x + 1/2))*e^(-1/2)))*log(-16*x^4 + e^(-1/2*(2*x^2
 - x - 2*log(5) + 1)/x))^3 - 3/2*(4*x^4 + 4*x^2*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^2 + 4*x^3 - 4*
(2*x^3 + x^2 + x)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2)) + 2*x + 1)*log(-16*x^4 + e^(-1/2*(2*x^2 - x
- 2*log(5) + 1)/x))^2/x^2 - 1/2*(8*x^6 - 8*x^3*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^3 + 12*x^5 - 12
*x^4 + 12*(2*x^4 + x^3 + x^2)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^2 - 6*x^2 - 6*(4*x^5 + 4*x^4 + 2
*x^2 + x)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2)) + 3*x + 1)*log(-16*x^4 + e^(-1/2*(2*x^2 - x - 2*log(
5) + 1)/x))/x^3 - 1/16*(16*x^8 + 16*x^4*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^4 + 32*x^7 - 64*x^6 -
48*x^5 - 32*(2*x^5 + x^4 + x^3)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^3 - 24*x^3 + 24*(4*x^6 + 4*x^5
 + 2*x^3 + x^2)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2))^2 - 16*x^2 - 8*(8*x^7 + 12*x^6 - 12*x^5 - 6*x^
3 + 3*x^2 + x)*log(-16*x^4*e^(x + 1/2/x) + e^(log(5)/x + 1/2)) + 4*x + 1)/x^4

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 ln(ex2+x2+ln(5)12x16x4)3(ex2+x2+ln(5)12x(4x2+4ln(5)2)+256x5)x2ex2+x2+ln(5)12x16x6dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^4)^3*(exp((x/2 + log(5) - x^2 - 1/2)/x)*(4*log(5) + 4*x^2 -
 2) + 256*x^5))/(x^2*exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^6),x)

[Out]

int(-(log(exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^4)^3*(exp((x/2 + log(5) - x^2 - 1/2)/x)*(4*log(5) + 4*x^2 -
 2) + 256*x^5))/(x^2*exp((x/2 + log(5) - x^2 - 1/2)/x) - 16*x^6), x)

________________________________________________________________________________________

sympy [A]  time = 0.63, size = 24, normalized size = 0.83 log(16x4+ex2+x212+log(5)x)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*ln(5)-4*x**2+2)*exp(1/2*(2*ln(5)-2*x**2+x-1)/x)-256*x**5)*ln(exp(1/2*(2*ln(5)-2*x**2+x-1)/x)-16
*x**4)**3/(x**2*exp(1/2*(2*ln(5)-2*x**2+x-1)/x)-16*x**6),x)

[Out]

log(-16*x**4 + exp((-x**2 + x/2 - 1/2 + log(5))/x))**4

________________________________________________________________________________________