3.89.36 800x+80e2xx2e4xx+(800+80e2x800x2+e4x(2+2x2))log(x)+(800+1600x+2400x2+e2x(80320x400x2160x3)+e4x(2+12x+14x2+8x3))log2(x)+(675+2400x+2400x2+1600x3+e2x(160400x480x2320x380x4)+e4x(6+14x+18x2+12x3+4x4))log3(x)25log3(x)dx

Optimal. Leaf size=32 5x+(4+e2x5)2(1+x+x2+xlog(x))2

________________________________________________________________________________________

Rubi [F]  time = 18.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 800x+80e2xx2e4xx+(800+80e2x800x2+e4x(2+2x2))log(x)+(800+1600x+2400x2+e2x(80320x400x2160x3)+e4x(2+12x+14x2+8x3))log2(x)+(675+2400x+2400x2+1600x3+e2x(160400x480x2320x380x4)+e4x(6+14x+18x2+12x3+4x4))log3(x)25log3(x)dx

Verification is not applicable to the result.

[In]

Int[(-800*x + 80*E^(2*x)*x - 2*E^(4*x)*x + (-800 + 80*E^(2*x) - 800*x^2 + E^(4*x)*(-2 + 2*x^2))*Log[x] + (800
+ 1600*x + 2400*x^2 + E^(2*x)*(-80 - 320*x - 400*x^2 - 160*x^3) + E^(4*x)*(2 + 12*x + 14*x^2 + 8*x^3))*Log[x]^
2 + (675 + 2400*x + 2400*x^2 + 1600*x^3 + E^(2*x)*(-160 - 400*x - 480*x^2 - 320*x^3 - 80*x^4) + E^(4*x)*(6 + 1
4*x + 18*x^2 + 12*x^3 + 4*x^4))*Log[x]^3)/(25*Log[x]^3),x]

[Out]

(-8*E^(2*x))/5 + E^(4*x)/25 + 27*x - (16*E^(2*x)*x)/5 + (2*E^(4*x)*x)/25 + 48*x^2 - (24*E^(2*x)*x^2)/5 + (3*E^
(4*x)*x^2)/25 + 32*x^3 - (16*E^(2*x)*x^3)/5 + (2*E^(4*x)*x^3)/25 + 16*x^4 - (8*E^(2*x)*x^4)/5 + (E^(4*x)*x^4)/
25 + (16*x^2)/Log[x]^2 + (32*x)/Log[x] + (32*x^2)/Log[x] + (32*x^3)/Log[x] + (16*Defer[Int][(E^(2*x)*x)/Log[x]
^3, x])/5 - (2*Defer[Int][(E^(4*x)*x)/Log[x]^3, x])/25 + (16*Defer[Int][E^(2*x)/Log[x]^2, x])/5 - (2*Defer[Int
][E^(4*x)/Log[x]^2, x])/25 + (2*Defer[Int][(E^(4*x)*x^2)/Log[x]^2, x])/25 - (16*Defer[Int][E^(2*x)/Log[x], x])
/5 + (2*Defer[Int][E^(4*x)/Log[x], x])/25 - (64*Defer[Int][(E^(2*x)*x)/Log[x], x])/5 + (12*Defer[Int][(E^(4*x)
*x)/Log[x], x])/25 - 16*Defer[Int][(E^(2*x)*x^2)/Log[x], x] + (14*Defer[Int][(E^(4*x)*x^2)/Log[x], x])/25 - (3
2*Defer[Int][(E^(2*x)*x^3)/Log[x], x])/5 + (8*Defer[Int][(E^(4*x)*x^3)/Log[x], x])/25

Rubi steps

integral=125800x+80e2xx2e4xx+(800+80e2x800x2+e4x(2+2x2))log(x)+(800+1600x+2400x2+e2x(80320x400x2160x3)+e4x(2+12x+14x2+8x3))log2(x)+(675+2400x+2400x2+1600x3+e2x(160400x480x2320x380x4)+e4x(6+14x+18x2+12x3+4x4))log3(x)log3(x)dx=125(25(32x32log(x)32x2log(x)+32log2(x)+64xlog2(x)+96x2log2(x)+27log3(x)+96xlog3(x)+96x2log3(x)+64x3log3(x))log3(x)80e2x(xlog(x)+log2(x)+4xlog2(x)+5x2log2(x)+2x3log2(x)+2log3(x)+5xlog3(x)+6x2log3(x)+4x3log3(x)+x4log3(x))log3(x)+2e4x(xlog(x)+x2log(x)+log2(x)+6xlog2(x)+7x2log2(x)+4x3log2(x)+3log3(x)+7xlog3(x)+9x2log3(x)+6x3log3(x)+2x4log3(x))log3(x))dx=225e4x(xlog(x)+x2log(x)+log2(x)+6xlog2(x)+7x2log2(x)+4x3log2(x)+3log3(x)+7xlog3(x)+9x2log3(x)+6x3log3(x)+2x4log3(x))log3(x)dx165e2x(xlog(x)+log2(x)+4xlog2(x)+5x2log2(x)+2x3log2(x)+2log3(x)+5xlog3(x)+6x2log3(x)+4x3log3(x)+x4log3(x))log3(x)dx+32x32log(x)32x2log(x)+32log2(x)+64xlog2(x)+96x2log2(x)+27log3(x)+96xlog3(x)+96x2log3(x)+64x3log3(x)log3(x)dx=225e4x(x+(1+x2)log(x)+(1+6x+7x2+4x3)log2(x)+(3+7x+9x2+6x3+2x4)log3(x))log3(x)dx165e2x(xlog(x)+(1+x)2(1+2x)log2(x)+(2+5x+6x2+4x3+x4)log3(x))log3(x)dx+(27+96x+96x2+64x332xlog3(x)32(1+x2)log2(x)+32(1+2x+3x2)log(x))dx=27x+48x2+32x3+16x4+225(3e4x+7e4xx+9e4xx2+6e4xx3+2e4xx4e4xxlog3(x)+e4x(1+x2)log2(x)+e4x(1+6x+7x2+4x3)log(x))dx165(2e2x+5e2xx+6e2xx2+4e2xx3+e2xx4e2xxlog3(x)e2xlog2(x)+e2x(1+x)2(1+2x)log(x))dx32xlog3(x)dx321+x2log2(x)dx+321+2x+3x2log(x)dx=27x+48x2+32x3+16x4+16x2log2(x)225e4xxlog3(x)dx+225e4x(1+x2)log2(x)dx+225e4x(1+6x+7x2+4x3)log(x)dx+425e4xx4dx+625e4xdx+1225e4xx3dx+1425e4xxdx+1825e4xx2dx165e2xx4dx+165e2xxlog3(x)dx+165e2xlog2(x)dx165e2x(1+x)2(1+2x)log(x)dx325e2xdx645e2xx3dx16e2xxdx965e2xx2dx32(1log2(x)+x2log2(x))dx+32(1log(x)+2xlog(x)+3x2log(x))dx32xlog2(x)dx=16e2x5+3e4x50+27x8e2xx+750e4xx+48x2485e2xx2+950e4xx2+32x3325e2xx3+325e4xx3+16x485e2xx4+125e4xx4+16x2log2(x)+32x2log(x)+225(e4xlog2(x)+e4xx2log2(x))dx+225(e4xlog(x)+6e4xxlog(x)+7e4xx2log(x)+4e4xx3log(x))dx225e4xxlog3(x)dx750e4xdx425e4xx3dx925e4xxdx925e4xx2dx165(e2xlog(x)+4e2xxlog(x)+5e2xx2log(x)+2e2xx3log(x))dx+165e2xxlog3(x)dx+165e2xlog2(x)dx+325e2xx3dx+8e2xdx+965e2xxdx+965e2xx2dx321log2(x)dx32x2log2(x)dx+321log(x)dx+96x2log(x)dx=4e2x5+e4x40+27x+85e2xx+120e4xx+48x2+9100e4xx2+32x3165e2xx3+225e4xx3+16x485e2xx4+125e4xx4+16x2log2(x)+32xlog(x)+32x2log(x)+32x3log(x)+32li(x)225e4xxlog3(x)dx225e4xlog2(x)dx+225e4xx2log2(x)dx+225e4xlog(x)dx+9100e4xdx+325e4xx2dx+950e4xxdx+825e4xx3log(x)dx+1225e4xxlog(x)dx+1425e4xx2log(x)dx+165e2xxlog3(x)dx+165e2xlog2(x)dx165e2xlog(x)dx325e2xx3log(x)dx485e2xdx485e2xx2dx645e2xxlog(x)dx16e2xx2log(x)dx965e2xxdx321log(x)dx96x2log(x)dx+96Subst(e3xxdx,x,log(x))=4e2x+19e4x400+27x8e2xx+19200e4xx+48x2245e2xx2+325e4xx2+32x3165e2xx3+225e4xx3+16x485e2xx4+125e4xx4+96Ei(3log(x))+16x2log2(x)+32xlog(x)+32x2log(x)+32x3log(x)9200e4xdx350e4xxdx225e4xxlog3(x)dx225e4xlog2(x)dx+225e4xx2log2(x)dx+225e4xlog(x)dx+825e4xx3log(x)dx+1225e4xxlog(x)dx+1425e4xx2log(x)dx+165e2xxlog3(x)dx+165e2xlog2(x)dx165e2xlog(x)dx325e2xx3log(x)dx+485e2xdx+485e2xxdx645e2xxlog(x)dx16e2xx2log(x)dx96Subst(e3xxdx,x,log(x))=4e2x5+29e4x800+27x165e2xx+225e4xx+48x2245e2xx2+325e4xx2+32x3165e2xx3+225e4xx3+16x485e2xx4+125e4xx4+16x2log2(x)+32xlog(x)+32x2log(x)+32x3log(x)+3200e4xdx225e4xxlog3(x)dx225e4xlog2(x)dx+225e4xx2log2(x)dx+225e4xlog(x)dx+825e4xx3log(x)dx+1225e4xxlog(x)dx+1425e4xx2log(x)dx+165e2xxlog3(x)dx+165e2xlog2(x)dx165e2xlog(x)dx245e2xdx325e2xx3log(x)dx645e2xxlog(x)dx16e2xx2log(x)dx=8e2x5+e4x25+27x165e2xx+225e4xx+48x2245e2xx2+325e4xx2+32x3165e2xx3+225e4xx3+16x485e2xx4+125e4xx4+16x2log2(x)+32xlog(x)+32x2log(x)+32x3log(x)225e4xxlog3(x)dx225e4xlog2(x)dx+225e4xx2log2(x)dx+225e4xlog(x)dx+825e4xx3log(x)dx+1225e4xxlog(x)dx+1425e4xx2log(x)dx+165e2xxlog3(x)dx+165e2xlog2(x)dx165e2xlog(x)dx325e2xx3log(x)dx645e2xxlog(x)dx16e2xx2log(x)dx

________________________________________________________________________________________

Mathematica [B]  time = 0.16, size = 91, normalized size = 2.84 125(675x+1200x2+800x3+400x440e2x(1+x+x2)2+e4x(1+x+x2)2+(20+e2x)2x2log2(x)+2(20+e2x)2x(1+x+x2)log(x))

Antiderivative was successfully verified.

[In]

Integrate[(-800*x + 80*E^(2*x)*x - 2*E^(4*x)*x + (-800 + 80*E^(2*x) - 800*x^2 + E^(4*x)*(-2 + 2*x^2))*Log[x] +
 (800 + 1600*x + 2400*x^2 + E^(2*x)*(-80 - 320*x - 400*x^2 - 160*x^3) + E^(4*x)*(2 + 12*x + 14*x^2 + 8*x^3))*L
og[x]^2 + (675 + 2400*x + 2400*x^2 + 1600*x^3 + E^(2*x)*(-160 - 400*x - 480*x^2 - 320*x^3 - 80*x^4) + E^(4*x)*
(6 + 14*x + 18*x^2 + 12*x^3 + 4*x^4))*Log[x]^3)/(25*Log[x]^3),x]

[Out]

(675*x + 1200*x^2 + 800*x^3 + 400*x^4 - 40*E^(2*x)*(1 + x + x^2)^2 + E^(4*x)*(1 + x + x^2)^2 + ((-20 + E^(2*x)
)^2*x^2)/Log[x]^2 + (2*(-20 + E^(2*x))^2*x*(1 + x + x^2))/Log[x])/25

________________________________________________________________________________________

fricas [B]  time = 0.52, size = 145, normalized size = 4.53 x2e(4x)40x2e(2x)+(400x4+800x3+1200x2+(x4+2x3+3x2+2x+1)e(4x)40(x4+2x3+3x2+2x+1)e(2x)+675x)log(x)2+400x2+2(400x3+400x2+(x3+x2+x)e(4x)40(x3+x2+x)e(2x)+400x)log(x)25log(x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/25*(((4*x^4+12*x^3+18*x^2+14*x+6)*exp(x)^4+(-80*x^4-320*x^3-480*x^2-400*x-160)*exp(x)^2+1600*x^3+2
400*x^2+2400*x+675)*log(x)^3+((8*x^3+14*x^2+12*x+2)*exp(x)^4+(-160*x^3-400*x^2-320*x-80)*exp(x)^2+2400*x^2+160
0*x+800)*log(x)^2+((2*x^2-2)*exp(x)^4+80*exp(x)^2-800*x^2-800)*log(x)-2*x*exp(x)^4+80*x*exp(x)^2-800*x)/log(x)
^3,x, algorithm="fricas")

[Out]

1/25*(x^2*e^(4*x) - 40*x^2*e^(2*x) + (400*x^4 + 800*x^3 + 1200*x^2 + (x^4 + 2*x^3 + 3*x^2 + 2*x + 1)*e^(4*x) -
 40*(x^4 + 2*x^3 + 3*x^2 + 2*x + 1)*e^(2*x) + 675*x)*log(x)^2 + 400*x^2 + 2*(400*x^3 + 400*x^2 + (x^3 + x^2 +
x)*e^(4*x) - 40*(x^3 + x^2 + x)*e^(2*x) + 400*x)*log(x))/log(x)^2

________________________________________________________________________________________

giac [B]  time = 0.27, size = 294, normalized size = 9.19 16x4+32x3+48x2+1800(32x432x3+24x212x+3)e(4x)+3800(32x324x2+12x3)e(4x)+9400(8x24x+1)e(4x)+7200(4x1)e(4x)45(2x44x3+6x26x+3)e(2x)85(4x36x2+6x3)e(2x)245(2x22x+1)e(2x)4(2x1)e(2x)+27x+2x3e(4x)log(x)80x3e(2x)log(x)+2x2e(4x)log(x)80x2e(2x)log(x)+x2e(4x)40x2e(2x)+2xe(4x)log(x)80xe(2x)log(x)25log(x)2+16(2x3log(x)+2x2log(x)+x2+2xlog(x))log(x)2+350e(4x)165e(2x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/25*(((4*x^4+12*x^3+18*x^2+14*x+6)*exp(x)^4+(-80*x^4-320*x^3-480*x^2-400*x-160)*exp(x)^2+1600*x^3+2
400*x^2+2400*x+675)*log(x)^3+((8*x^3+14*x^2+12*x+2)*exp(x)^4+(-160*x^3-400*x^2-320*x-80)*exp(x)^2+2400*x^2+160
0*x+800)*log(x)^2+((2*x^2-2)*exp(x)^4+80*exp(x)^2-800*x^2-800)*log(x)-2*x*exp(x)^4+80*x*exp(x)^2-800*x)/log(x)
^3,x, algorithm="giac")

[Out]

16*x^4 + 32*x^3 + 48*x^2 + 1/800*(32*x^4 - 32*x^3 + 24*x^2 - 12*x + 3)*e^(4*x) + 3/800*(32*x^3 - 24*x^2 + 12*x
 - 3)*e^(4*x) + 9/400*(8*x^2 - 4*x + 1)*e^(4*x) + 7/200*(4*x - 1)*e^(4*x) - 4/5*(2*x^4 - 4*x^3 + 6*x^2 - 6*x +
 3)*e^(2*x) - 8/5*(4*x^3 - 6*x^2 + 6*x - 3)*e^(2*x) - 24/5*(2*x^2 - 2*x + 1)*e^(2*x) - 4*(2*x - 1)*e^(2*x) + 2
7*x + 1/25*(2*x^3*e^(4*x)*log(x) - 80*x^3*e^(2*x)*log(x) + 2*x^2*e^(4*x)*log(x) - 80*x^2*e^(2*x)*log(x) + x^2*
e^(4*x) - 40*x^2*e^(2*x) + 2*x*e^(4*x)*log(x) - 80*x*e^(2*x)*log(x))/log(x)^2 + 16*(2*x^3*log(x) + 2*x^2*log(x
) + x^2 + 2*x*log(x))/log(x)^2 + 3/50*e^(4*x) - 16/5*e^(2*x)

________________________________________________________________________________________

maple [B]  time = 0.07, size = 196, normalized size = 6.12




method result size



risch x4e4x25+2x3e4x258e2xx45+3x2e4x2516e2xx35+2xe4x25+16x424e2xx25+e4x25+32x316xe2x5+48x28e2x5+27x+x(2ln(x)e4xx2+2xe4xln(x)80x2e2xln(x)+xe4x+2ln(x)e4x80xe2xln(x)+800x2ln(x)40xe2x80ln(x)e2x+800xln(x)+400x+800ln(x))25ln(x)2 196



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/25*(((4*x^4+12*x^3+18*x^2+14*x+6)*exp(x)^4+(-80*x^4-320*x^3-480*x^2-400*x-160)*exp(x)^2+1600*x^3+2400*x^
2+2400*x+675)*ln(x)^3+((8*x^3+14*x^2+12*x+2)*exp(x)^4+(-160*x^3-400*x^2-320*x-80)*exp(x)^2+2400*x^2+1600*x+800
)*ln(x)^2+((2*x^2-2)*exp(x)^4+80*exp(x)^2-800*x^2-800)*ln(x)-2*x*exp(x)^4+80*x*exp(x)^2-800*x)/ln(x)^3,x,metho
d=_RETURNVERBOSE)

[Out]

1/25*x^4*exp(4*x)+2/25*x^3*exp(4*x)-8/5*exp(2*x)*x^4+3/25*x^2*exp(4*x)-16/5*exp(2*x)*x^3+2/25*x*exp(4*x)+16*x^
4-24/5*exp(2*x)*x^2+1/25*exp(4*x)+32*x^3-16/5*x*exp(2*x)+48*x^2-8/5*exp(2*x)+27*x+1/25*x*(2*ln(x)*exp(4*x)*x^2
+2*x*exp(4*x)*ln(x)-80*x^2*exp(2*x)*ln(x)+x*exp(4*x)+2*ln(x)*exp(4*x)-80*x*exp(2*x)*ln(x)+800*x^2*ln(x)-40*x*e
xp(2*x)-80*ln(x)*exp(2*x)+800*x*ln(x)+400*x+800*ln(x))/ln(x)^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 16x4+32x3+48x2+1800(32x432x3+24x212x+3)e(4x)+3800(32x324x2+12x3)e(4x)+9400(8x24x+1)e(4x)+7200(4x1)e(4x)45(2x44x3+6x26x+3)e(2x)85(4x36x2+6x3)e(2x)245(2x22x+1)e(2x)4(2x1)e(2x)+27x+(x2+2(x3+x2+x)log(x))e(4x)40(x2+2(x3+x2+x)log(x))e(2x)+800(x3+x)log(x)25log(x)2+350e(4x)165e(2x)+128Γ(2,2log(x))+64xlog(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/25*(((4*x^4+12*x^3+18*x^2+14*x+6)*exp(x)^4+(-80*x^4-320*x^3-480*x^2-400*x-160)*exp(x)^2+1600*x^3+2
400*x^2+2400*x+675)*log(x)^3+((8*x^3+14*x^2+12*x+2)*exp(x)^4+(-160*x^3-400*x^2-320*x-80)*exp(x)^2+2400*x^2+160
0*x+800)*log(x)^2+((2*x^2-2)*exp(x)^4+80*exp(x)^2-800*x^2-800)*log(x)-2*x*exp(x)^4+80*x*exp(x)^2-800*x)/log(x)
^3,x, algorithm="maxima")

[Out]

16*x^4 + 32*x^3 + 48*x^2 + 1/800*(32*x^4 - 32*x^3 + 24*x^2 - 12*x + 3)*e^(4*x) + 3/800*(32*x^3 - 24*x^2 + 12*x
 - 3)*e^(4*x) + 9/400*(8*x^2 - 4*x + 1)*e^(4*x) + 7/200*(4*x - 1)*e^(4*x) - 4/5*(2*x^4 - 4*x^3 + 6*x^2 - 6*x +
 3)*e^(2*x) - 8/5*(4*x^3 - 6*x^2 + 6*x - 3)*e^(2*x) - 24/5*(2*x^2 - 2*x + 1)*e^(2*x) - 4*(2*x - 1)*e^(2*x) + 2
7*x + 1/25*((x^2 + 2*(x^3 + x^2 + x)*log(x))*e^(4*x) - 40*(x^2 + 2*(x^3 + x^2 + x)*log(x))*e^(2*x) + 800*(x^3
+ x)*log(x))/log(x)^2 + 3/50*e^(4*x) - 16/5*e^(2*x) + 128*gamma(-2, -2*log(x)) + 64*integrate(x/log(x), x)

________________________________________________________________________________________

mupad [B]  time = 6.21, size = 233, normalized size = 7.28 27x8e2x5+e4x2516xe2x5+2xe4x25+32xln(x)24x2e2x516x3e2x5+3x2e4x258x4e2x5+2x3e4x25+x4e4x25+32x2ln(x)+16x2ln(x)2+32x3ln(x)+48x2+32x3+16x416xe2x5ln(x)+2xe4x25ln(x)16x2e2x5ln(x)8x2e2x5ln(x)216x3e2x5ln(x)+2x2e4x25ln(x)+x2e4x25ln(x)2+2x3e4x25ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((16*x*exp(2*x))/5 - 32*x - (2*x*exp(4*x))/25 + (log(x)^3*(2400*x + exp(4*x)*(14*x + 18*x^2 + 12*x^3 + 4*x
^4 + 6) - exp(2*x)*(400*x + 480*x^2 + 320*x^3 + 80*x^4 + 160) + 2400*x^2 + 1600*x^3 + 675))/25 + (log(x)^2*(16
00*x + exp(4*x)*(12*x + 14*x^2 + 8*x^3 + 2) - exp(2*x)*(320*x + 400*x^2 + 160*x^3 + 80) + 2400*x^2 + 800))/25
+ (log(x)*(80*exp(2*x) + exp(4*x)*(2*x^2 - 2) - 800*x^2 - 800))/25)/log(x)^3,x)

[Out]

27*x - (8*exp(2*x))/5 + exp(4*x)/25 - (16*x*exp(2*x))/5 + (2*x*exp(4*x))/25 + (32*x)/log(x) - (24*x^2*exp(2*x)
)/5 - (16*x^3*exp(2*x))/5 + (3*x^2*exp(4*x))/25 - (8*x^4*exp(2*x))/5 + (2*x^3*exp(4*x))/25 + (x^4*exp(4*x))/25
 + (32*x^2)/log(x) + (16*x^2)/log(x)^2 + (32*x^3)/log(x) + 48*x^2 + 32*x^3 + 16*x^4 - (16*x*exp(2*x))/(5*log(x
)) + (2*x*exp(4*x))/(25*log(x)) - (16*x^2*exp(2*x))/(5*log(x)) - (8*x^2*exp(2*x))/(5*log(x)^2) - (16*x^3*exp(2
*x))/(5*log(x)) + (2*x^2*exp(4*x))/(25*log(x)) + (x^2*exp(4*x))/(25*log(x)^2) + (2*x^3*exp(4*x))/(25*log(x))

________________________________________________________________________________________

sympy [B]  time = 0.55, size = 233, normalized size = 7.28 16x4+32x3+48x2+27x+16x2+(32x3+32x2+32x)log(x)log(x)2+(200x4log(x)4400x3log(x)4400x3log(x)3600x2log(x)4400x2log(x)3200x2log(x)2400xlog(x)4400xlog(x)3200log(x)4)e2x+(5x4log(x)4+10x3log(x)4+10x3log(x)3+15x2log(x)4+10x2log(x)3+5x2log(x)2+10xlog(x)4+10xlog(x)3+5log(x)4)e4x125log(x)4

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/25*(((4*x**4+12*x**3+18*x**2+14*x+6)*exp(x)**4+(-80*x**4-320*x**3-480*x**2-400*x-160)*exp(x)**2+16
00*x**3+2400*x**2+2400*x+675)*ln(x)**3+((8*x**3+14*x**2+12*x+2)*exp(x)**4+(-160*x**3-400*x**2-320*x-80)*exp(x)
**2+2400*x**2+1600*x+800)*ln(x)**2+((2*x**2-2)*exp(x)**4+80*exp(x)**2-800*x**2-800)*ln(x)-2*x*exp(x)**4+80*x*e
xp(x)**2-800*x)/ln(x)**3,x)

[Out]

16*x**4 + 32*x**3 + 48*x**2 + 27*x + (16*x**2 + (32*x**3 + 32*x**2 + 32*x)*log(x))/log(x)**2 + ((-200*x**4*log
(x)**4 - 400*x**3*log(x)**4 - 400*x**3*log(x)**3 - 600*x**2*log(x)**4 - 400*x**2*log(x)**3 - 200*x**2*log(x)**
2 - 400*x*log(x)**4 - 400*x*log(x)**3 - 200*log(x)**4)*exp(2*x) + (5*x**4*log(x)**4 + 10*x**3*log(x)**4 + 10*x
**3*log(x)**3 + 15*x**2*log(x)**4 + 10*x**2*log(x)**3 + 5*x**2*log(x)**2 + 10*x*log(x)**4 + 10*x*log(x)**3 + 5
*log(x)**4)*exp(4*x))/(125*log(x)**4)

________________________________________________________________________________________