Optimal. Leaf size=23 \[ 2-x+\left (-e^4+e^{3/x}-4 x\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 23, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {6, 14, 2288} \begin {gather*} -4 x^2+e^{3/x} x-\left (1+e^4\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{3/x} (-3+x)+\left (-1-e^4\right ) x-8 x^2}{x} \, dx\\ &=\int \left (-1-e^4+\frac {e^{3/x} (-3+x)}{x}-8 x\right ) \, dx\\ &=-\left (\left (1+e^4\right ) x\right )-4 x^2+\int \frac {e^{3/x} (-3+x)}{x} \, dx\\ &=e^{3/x} x-\left (1+e^4\right ) x-4 x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 24, normalized size = 1.04 \begin {gather*} -x-e^4 x+e^{3/x} x-4 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 22, normalized size = 0.96 \begin {gather*} -4 \, x^{2} - x e^{4} + x e^{\frac {3}{x}} - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 27, normalized size = 1.17 \begin {gather*} -x^{2} {\left (\frac {e^{4}}{x} - \frac {e^{\frac {3}{x}}}{x} + \frac {1}{x} + 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 23, normalized size = 1.00
method | result | size |
derivativedivides | \(-4 x^{2}-x -x \,{\mathrm e}^{4}+x \,{\mathrm e}^{\frac {3}{x}}\) | \(23\) |
default | \(-4 x^{2}-x -x \,{\mathrm e}^{4}+x \,{\mathrm e}^{\frac {3}{x}}\) | \(23\) |
norman | \(x \,{\mathrm e}^{\frac {3}{x}}+\left (-{\mathrm e}^{4}-1\right ) x -4 x^{2}\) | \(23\) |
risch | \(-4 x^{2}-x -x \,{\mathrm e}^{4}+x \,{\mathrm e}^{\frac {3}{x}}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.40, size = 31, normalized size = 1.35 \begin {gather*} -4 \, x^{2} - x e^{4} - x + 3 \, {\rm Ei}\left (\frac {3}{x}\right ) - 3 \, \Gamma \left (-1, -\frac {3}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.08, size = 18, normalized size = 0.78 \begin {gather*} -x\,\left (4\,x+{\mathrm {e}}^4-{\mathrm {e}}^{3/x}+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.83 \begin {gather*} - 4 x^{2} + x e^{\frac {3}{x}} + x \left (- e^{4} - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________