3.89.50
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [B] time = 1.76, antiderivative size = 64, normalized size of antiderivative = 2.56,
number of steps used = 1, number of rules used = 1, integrand size = 95, = 0.011, Rules used =
{6706}
Antiderivative was successfully verified.
[In]
Int[(E^(x - 16*E^(2 + 2*E^3)*x^2 - 32*E^(2 + 2*E^3)*x*Log[3*x] - 16*E^(2 + 2*E^3)*Log[3*x]^2)*(x + E^(2 + 2*E^
3)*(-32*x - 32*x^2) + E^(2 + 2*E^3)*(-32 - 32*x)*Log[3*x]))/x,x]
[Out]
E^(x - 16*E^(2 + 2*E^3)*x^2 - 16*E^(2 + 2*E^3)*Log[3*x]^2)/(3^(32*E^(2 + 2*E^3)*x)*x^(32*E^(2 + 2*E^3)*x))
Rule 6706
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /; !FalseQ[q]
] /; FreeQ[F, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.16, size = 51, normalized size = 2.04
Antiderivative was successfully verified.
[In]
Integrate[(E^(x - 16*E^(2 + 2*E^3)*x^2 - 32*E^(2 + 2*E^3)*x*Log[3*x] - 16*E^(2 + 2*E^3)*Log[3*x]^2)*(x + E^(2
+ 2*E^3)*(-32*x - 32*x^2) + E^(2 + 2*E^3)*(-32 - 32*x)*Log[3*x]))/x,x]
[Out]
E^(x - 16*E^(2 + 2*E^3)*x^2 - 32*E^(2 + 2*E^3)*x*Log[3*x] - 16*E^(2 + 2*E^3)*Log[3*x]^2)
________________________________________________________________________________________
fricas [A] time = 0.52, size = 44, normalized size = 1.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-32*x-32)*exp(exp(3)+1)^2*log(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*log(3
*x)^2-32*x*exp(exp(3)+1)^2*log(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x, algorithm="fricas")
[Out]
e^(-16*x^2*e^(2*e^3 + 2) - 32*x*e^(2*e^3 + 2)*log(3*x) - 16*e^(2*e^3 + 2)*log(3*x)^2 + x)
________________________________________________________________________________________
giac [A] time = 0.37, size = 44, normalized size = 1.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-32*x-32)*exp(exp(3)+1)^2*log(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*log(3
*x)^2-32*x*exp(exp(3)+1)^2*log(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x, algorithm="giac")
[Out]
e^(-16*x^2*e^(2*e^3 + 2) - 32*x*e^(2*e^3 + 2)*log(3*x) - 16*e^(2*e^3 + 2)*log(3*x)^2 + x)
________________________________________________________________________________________
maple [A] time = 0.11, size = 45, normalized size = 1.80
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-32*x-32)*exp(exp(3)+1)^2*ln(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*ln(3*x)^2-32
*x*exp(exp(3)+1)^2*ln(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x,method=_RETURNVERBOSE)
[Out]
exp(-16*exp(exp(3)+1)^2*ln(3*x)^2-32*x*exp(exp(3)+1)^2*ln(3*x)-16*x^2*exp(exp(3)+1)^2+x)
________________________________________________________________________________________
maxima [B] time = 0.71, size = 78, normalized size = 3.12
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-32*x-32)*exp(exp(3)+1)^2*log(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*log(3
*x)^2-32*x*exp(exp(3)+1)^2*log(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x, algorithm="maxima")
[Out]
e^(-16*x^2*e^(2*e^3 + 2) - 32*x*e^(2*e^3 + 2)*log(3) - 16*e^(2*e^3 + 2)*log(3)^2 - 32*x*e^(2*e^3 + 2)*log(x) -
32*e^(2*e^3 + 2)*log(3)*log(x) - 16*e^(2*e^3 + 2)*log(x)^2 + x)
________________________________________________________________________________________
mupad [B] time = 5.45, size = 87, normalized size = 3.48
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp(x - 16*log(3*x)^2*exp(2*exp(3) + 2) - 16*x^2*exp(2*exp(3) + 2) - 32*x*log(3*x)*exp(2*exp(3) + 2))*(e
xp(2*exp(3) + 2)*(32*x + 32*x^2) - x + log(3*x)*exp(2*exp(3) + 2)*(32*x + 32)))/x,x)
[Out]
(exp(-16*exp(2*exp(3))*exp(2)*log(3)^2)*exp(-16*x^2*exp(2*exp(3))*exp(2))*exp(-16*exp(2*exp(3))*exp(2)*log(x)^
2)*exp(x))/(3^(32*x*exp(2*exp(3))*exp(2))*x^(32*exp(2*exp(3))*exp(2)*log(3))*x^(32*x*exp(2*exp(3))*exp(2)))
________________________________________________________________________________________
sympy [B] time = 0.44, size = 49, normalized size = 1.96
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-32*x-32)*exp(exp(3)+1)**2*ln(3*x)+(-32*x**2-32*x)*exp(exp(3)+1)**2+x)*exp(-16*exp(exp(3)+1)**2*ln
(3*x)**2-32*x*exp(exp(3)+1)**2*ln(3*x)-16*x**2*exp(exp(3)+1)**2+x)/x,x)
[Out]
exp(-16*x**2*exp(2 + 2*exp(3)) - 32*x*exp(2 + 2*exp(3))*log(3*x) + x - 16*exp(2 + 2*exp(3))*log(3*x)**2)
________________________________________________________________________________________