3.89.50 ex16e2+2e3x232e2+2e3xlog(3x)16e2+2e3log2(3x)(x+e2+2e3(32x32x2)+e2+2e3(3232x)log(3x))xdx

Optimal. Leaf size=25 16+ex16e2+2e3(x+log(3x))2

________________________________________________________________________________________

Rubi [B]  time = 1.76, antiderivative size = 64, normalized size of antiderivative = 2.56, number of steps used = 1, number of rules used = 1, integrand size = 95, number of rulesintegrand size = 0.011, Rules used = {6706} 332e2+2e3xx32e2+2e3xexp(16e2+2e3x2+x16e2+2e3log2(3x))

Antiderivative was successfully verified.

[In]

Int[(E^(x - 16*E^(2 + 2*E^3)*x^2 - 32*E^(2 + 2*E^3)*x*Log[3*x] - 16*E^(2 + 2*E^3)*Log[3*x]^2)*(x + E^(2 + 2*E^
3)*(-32*x - 32*x^2) + E^(2 + 2*E^3)*(-32 - 32*x)*Log[3*x]))/x,x]

[Out]

E^(x - 16*E^(2 + 2*E^3)*x^2 - 16*E^(2 + 2*E^3)*Log[3*x]^2)/(3^(32*E^(2 + 2*E^3)*x)*x^(32*E^(2 + 2*E^3)*x))

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=332e2+2e3xexp(x16e2+2e3x216e2+2e3log2(3x))x32e2+2e3x

________________________________________________________________________________________

Mathematica [B]  time = 0.16, size = 51, normalized size = 2.04 ex16e2+2e3x232e2+2e3xlog(3x)16e2+2e3log2(3x)

Antiderivative was successfully verified.

[In]

Integrate[(E^(x - 16*E^(2 + 2*E^3)*x^2 - 32*E^(2 + 2*E^3)*x*Log[3*x] - 16*E^(2 + 2*E^3)*Log[3*x]^2)*(x + E^(2
+ 2*E^3)*(-32*x - 32*x^2) + E^(2 + 2*E^3)*(-32 - 32*x)*Log[3*x]))/x,x]

[Out]

E^(x - 16*E^(2 + 2*E^3)*x^2 - 32*E^(2 + 2*E^3)*x*Log[3*x] - 16*E^(2 + 2*E^3)*Log[3*x]^2)

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 44, normalized size = 1.76 e(16x2e(2e3+2)32xe(2e3+2)log(3x)16e(2e3+2)log(3x)2+x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x-32)*exp(exp(3)+1)^2*log(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*log(3
*x)^2-32*x*exp(exp(3)+1)^2*log(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x, algorithm="fricas")

[Out]

e^(-16*x^2*e^(2*e^3 + 2) - 32*x*e^(2*e^3 + 2)*log(3*x) - 16*e^(2*e^3 + 2)*log(3*x)^2 + x)

________________________________________________________________________________________

giac [A]  time = 0.37, size = 44, normalized size = 1.76 e(16x2e(2e3+2)32xe(2e3+2)log(3x)16e(2e3+2)log(3x)2+x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x-32)*exp(exp(3)+1)^2*log(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*log(3
*x)^2-32*x*exp(exp(3)+1)^2*log(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x, algorithm="giac")

[Out]

e^(-16*x^2*e^(2*e^3 + 2) - 32*x*e^(2*e^3 + 2)*log(3*x) - 16*e^(2*e^3 + 2)*log(3*x)^2 + x)

________________________________________________________________________________________

maple [A]  time = 0.11, size = 45, normalized size = 1.80




method result size



norman e16e2e3+2ln(3x)232xe2e3+2ln(3x)16x2e2e3+2+x 45
risch (3x)32xe2e3+2e16e2e3+2ln(3x)216x2e2e3+2+x 46



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-32*x-32)*exp(exp(3)+1)^2*ln(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*ln(3*x)^2-32
*x*exp(exp(3)+1)^2*ln(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x,method=_RETURNVERBOSE)

[Out]

exp(-16*exp(exp(3)+1)^2*ln(3*x)^2-32*x*exp(exp(3)+1)^2*ln(3*x)-16*x^2*exp(exp(3)+1)^2+x)

________________________________________________________________________________________

maxima [B]  time = 0.71, size = 78, normalized size = 3.12 e(16x2e(2e3+2)32xe(2e3+2)log(3)16e(2e3+2)log(3)232xe(2e3+2)log(x)32e(2e3+2)log(3)log(x)16e(2e3+2)log(x)2+x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x-32)*exp(exp(3)+1)^2*log(3*x)+(-32*x^2-32*x)*exp(exp(3)+1)^2+x)*exp(-16*exp(exp(3)+1)^2*log(3
*x)^2-32*x*exp(exp(3)+1)^2*log(3*x)-16*x^2*exp(exp(3)+1)^2+x)/x,x, algorithm="maxima")

[Out]

e^(-16*x^2*e^(2*e^3 + 2) - 32*x*e^(2*e^3 + 2)*log(3) - 16*e^(2*e^3 + 2)*log(3)^2 - 32*x*e^(2*e^3 + 2)*log(x) -
 32*e^(2*e^3 + 2)*log(3)*log(x) - 16*e^(2*e^3 + 2)*log(x)^2 + x)

________________________________________________________________________________________

mupad [B]  time = 5.45, size = 87, normalized size = 3.48 e16e2e3e2ln(3)2e16x2e2e3e2e16e2e3e2ln(x)2ex332xe2e3e2x32e2e3e2ln(3)x32xe2e3e2

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp(x - 16*log(3*x)^2*exp(2*exp(3) + 2) - 16*x^2*exp(2*exp(3) + 2) - 32*x*log(3*x)*exp(2*exp(3) + 2))*(e
xp(2*exp(3) + 2)*(32*x + 32*x^2) - x + log(3*x)*exp(2*exp(3) + 2)*(32*x + 32)))/x,x)

[Out]

(exp(-16*exp(2*exp(3))*exp(2)*log(3)^2)*exp(-16*x^2*exp(2*exp(3))*exp(2))*exp(-16*exp(2*exp(3))*exp(2)*log(x)^
2)*exp(x))/(3^(32*x*exp(2*exp(3))*exp(2))*x^(32*exp(2*exp(3))*exp(2)*log(3))*x^(32*x*exp(2*exp(3))*exp(2)))

________________________________________________________________________________________

sympy [B]  time = 0.44, size = 49, normalized size = 1.96 e16x2e2+2e332xe2+2e3log(3x)+x16e2+2e3log(3x)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-32*x-32)*exp(exp(3)+1)**2*ln(3*x)+(-32*x**2-32*x)*exp(exp(3)+1)**2+x)*exp(-16*exp(exp(3)+1)**2*ln
(3*x)**2-32*x*exp(exp(3)+1)**2*ln(3*x)-16*x**2*exp(exp(3)+1)**2+x)/x,x)

[Out]

exp(-16*x**2*exp(2 + 2*exp(3)) - 32*x*exp(2 + 2*exp(3))*log(3*x) + x - 16*exp(2 + 2*exp(3))*log(3*x)**2)

________________________________________________________________________________________