3.89.52 eexx2+eexx2(4ex+exx2+x2)4x(5x2+ex(10x45x5)+eexx2(20x+ex(20+20x)))4x3dx

Optimal. Leaf size=32 5eex+14eexx2x2xx

________________________________________________________________________________________

Rubi [F]  time = 6.33, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} exp(exx2+eexx2(4ex+exx2+x2)4x)(5x2+ex(10x45x5)+eexx2(20x+ex(20+20x)))4x3dx

Verification is not applicable to the result.

[In]

Int[(E^(-(E^x*x^2) + (4*E^(x + E^x*x^2) + x^2)/(4*E^(E^x*x^2)*x))*(5*x^2 + E^x*(-10*x^4 - 5*x^5) + E^(E^x*x^2)
*(-20*x + E^x*(-20 + 20*x))))/(4*x^3),x]

[Out]

-5*Defer[Int][E^(E^x/x + x + x/(4*E^(E^x*x^2)))/x^3, x] - 5*Defer[Int][E^(E^x/x + x/(4*E^(E^x*x^2)))/x^2, x] +
 5*Defer[Int][E^(E^x/x + x + x/(4*E^(E^x*x^2)))/x^2, x] + (5*Defer[Int][E^(x/(4*E^(E^x*x^2)) + E^x*(x^(-1) - x
^2))/x, x])/4 - (5*Defer[Int][E^(x + x/(4*E^(E^x*x^2)) + E^x*(x^(-1) - x^2))*x, x])/2 - (5*Defer[Int][E^(x + x
/(4*E^(E^x*x^2)) + E^x*(x^(-1) - x^2))*x^2, x])/4

Rubi steps

integral=14exp(exx2+eexx2(4ex+exx2+x2)4x)(5x2+ex(10x45x5)+eexx2(20x+ex(20+20x)))x3dx=14(20exp(eexx2(4ex+exx2+x2)4x)(exx+exx)x35exp(exx2+eexx2(4ex+exx2+x2)4x)(1+2exx2+exx3)x)dx=(54exp(exx2+eexx2(4ex+exx2+x2)4x)(1+2exx2+exx3)xdx)+5exp(eexx2(4ex+exx2+x2)4x)(exx+exx)x3dx=(54e14eexx2x+ex(1xx2)(1+exx2(2+x))xdx)+5eexx+14eexx2x(ex(1+x)x)x3dx=(54(e14eexx2x+ex(1xx2)x+ex+14eexx2x+ex(1xx2)x(2+x))dx)+5(eexx+x+14eexx2x(1+x)x3eexx+14eexx2xx2)dx=54e14eexx2x+ex(1xx2)xdx54ex+14eexx2x+ex(1xx2)x(2+x)dx+5eexx+x+14eexx2x(1+x)x3dx5eexx+14eexx2xx2dx=54e14eexx2x+ex(1xx2)xdx54(2ex+14eexx2x+ex(1xx2)x+ex+14eexx2x+ex(1xx2)x2)dx+5(eexx+x+14eexx2xx3+eexx+x+14eexx2xx2)dx5eexx+14eexx2xx2dx=54e14eexx2x+ex(1xx2)xdx54ex+14eexx2x+ex(1xx2)x2dx52ex+14eexx2x+ex(1xx2)xdx5eexx+x+14eexx2xx3dx5eexx+14eexx2xx2dx+5eexx+x+14eexx2xx2dx

________________________________________________________________________________________

Mathematica [A]  time = 4.18, size = 30, normalized size = 0.94 5eexx+14eexx2xx

Antiderivative was successfully verified.

[In]

Integrate[(E^(-(E^x*x^2) + (4*E^(x + E^x*x^2) + x^2)/(4*E^(E^x*x^2)*x))*(5*x^2 + E^x*(-10*x^4 - 5*x^5) + E^(E^
x*x^2)*(-20*x + E^x*(-20 + 20*x))))/(4*x^3),x]

[Out]

(5*E^(E^x/x + x/(4*E^(E^x*x^2))))/x

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 55, normalized size = 1.72 5e(x2ex+(x2ex4(x31)e(x2ex+2x))e(x2exx)4x)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp
(x)*x^2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x, algorithm="fricas")

[Out]

5*e^(x^2*e^x + 1/4*(x^2*e^x - 4*(x^3 - 1)*e^(x^2*e^x + 2*x))*e^(-x^2*e^x - x)/x)/x

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 5(x2+4((x1)exx)e(x2ex)(x5+2x4)ex)e(x2ex+(x2+4e(x2ex+x))e(x2ex)4x)4x3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp
(x)*x^2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x, algorithm="giac")

[Out]

integrate(5/4*(x^2 + 4*((x - 1)*e^x - x)*e^(x^2*e^x) - (x^5 + 2*x^4)*e^x)*e^(-x^2*e^x + 1/4*(x^2 + 4*e^(x^2*e^
x + x))*e^(-x^2*e^x)/x)/x^3, x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 35, normalized size = 1.09




method result size



risch 5e(4ex(exx+1)+x2)eexx24xx 35



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp(x)*x^
2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x,method=_RETURNVERBOSE)

[Out]

5/x*exp(1/4*(4*exp(x*(exp(x)*x+1))+x^2)/x*exp(-exp(x)*x^2))

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 24, normalized size = 0.75 5e(14xe(x2ex)+exx)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp
(x)*x^2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x, algorithm="maxima")

[Out]

5*e^(1/4*x*e^(-x^2*e^x) + e^x/x)/x

________________________________________________________________________________________

mupad [B]  time = 5.29, size = 24, normalized size = 0.75 5eexx+xex2ex4x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(exp((exp(-x^2*exp(x))*(exp(x^2*exp(x))*exp(x) + x^2/4))/x)*exp(-x^2*exp(x))*(exp(x)*(10*x^4 + 5*x^5) + e
xp(x^2*exp(x))*(20*x - exp(x)*(20*x - 20)) - 5*x^2))/(4*x^3),x)

[Out]

(5*exp(exp(x)/x + (x*exp(-x^2*exp(x)))/4))/x

________________________________________________________________________________________

sympy [A]  time = 0.52, size = 31, normalized size = 0.97 5e(x24+exex2ex)ex2exxx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x**2)+(-5*x**5-10*x**4)*exp(x)+5*x**2)*exp(1/4*(4*exp(x)*exp
(exp(x)*x**2)+x**2)/x/exp(exp(x)*x**2))/x**3/exp(exp(x)*x**2),x)

[Out]

5*exp((x**2/4 + exp(x)*exp(x**2*exp(x)))*exp(-x**2*exp(x))/x)/x

________________________________________________________________________________________