3.89.52
Optimal. Leaf size=32
________________________________________________________________________________________
Rubi [F] time = 6.33, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(E^(-(E^x*x^2) + (4*E^(x + E^x*x^2) + x^2)/(4*E^(E^x*x^2)*x))*(5*x^2 + E^x*(-10*x^4 - 5*x^5) + E^(E^x*x^2)
*(-20*x + E^x*(-20 + 20*x))))/(4*x^3),x]
[Out]
-5*Defer[Int][E^(E^x/x + x + x/(4*E^(E^x*x^2)))/x^3, x] - 5*Defer[Int][E^(E^x/x + x/(4*E^(E^x*x^2)))/x^2, x] +
5*Defer[Int][E^(E^x/x + x + x/(4*E^(E^x*x^2)))/x^2, x] + (5*Defer[Int][E^(x/(4*E^(E^x*x^2)) + E^x*(x^(-1) - x
^2))/x, x])/4 - (5*Defer[Int][E^(x + x/(4*E^(E^x*x^2)) + E^x*(x^(-1) - x^2))*x, x])/2 - (5*Defer[Int][E^(x + x
/(4*E^(E^x*x^2)) + E^x*(x^(-1) - x^2))*x^2, x])/4
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 4.18, size = 30, normalized size = 0.94
Antiderivative was successfully verified.
[In]
Integrate[(E^(-(E^x*x^2) + (4*E^(x + E^x*x^2) + x^2)/(4*E^(E^x*x^2)*x))*(5*x^2 + E^x*(-10*x^4 - 5*x^5) + E^(E^
x*x^2)*(-20*x + E^x*(-20 + 20*x))))/(4*x^3),x]
[Out]
(5*E^(E^x/x + x/(4*E^(E^x*x^2))))/x
________________________________________________________________________________________
fricas [A] time = 0.48, size = 55, normalized size = 1.72
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp
(x)*x^2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x, algorithm="fricas")
[Out]
5*e^(x^2*e^x + 1/4*(x^2*e^x - 4*(x^3 - 1)*e^(x^2*e^x + 2*x))*e^(-x^2*e^x - x)/x)/x
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp
(x)*x^2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x, algorithm="giac")
[Out]
integrate(5/4*(x^2 + 4*((x - 1)*e^x - x)*e^(x^2*e^x) - (x^5 + 2*x^4)*e^x)*e^(-x^2*e^x + 1/4*(x^2 + 4*e^(x^2*e^
x + x))*e^(-x^2*e^x)/x)/x^3, x)
________________________________________________________________________________________
maple [A] time = 0.08, size = 35, normalized size = 1.09
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp(x)*x^
2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x,method=_RETURNVERBOSE)
[Out]
5/x*exp(1/4*(4*exp(x*(exp(x)*x+1))+x^2)/x*exp(-exp(x)*x^2))
________________________________________________________________________________________
maxima [A] time = 0.54, size = 24, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x^2)+(-5*x^5-10*x^4)*exp(x)+5*x^2)*exp(1/4*(4*exp(x)*exp(exp
(x)*x^2)+x^2)/x/exp(exp(x)*x^2))/x^3/exp(exp(x)*x^2),x, algorithm="maxima")
[Out]
5*e^(1/4*x*e^(-x^2*e^x) + e^x/x)/x
________________________________________________________________________________________
mupad [B] time = 5.29, size = 24, normalized size = 0.75
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(exp((exp(-x^2*exp(x))*(exp(x^2*exp(x))*exp(x) + x^2/4))/x)*exp(-x^2*exp(x))*(exp(x)*(10*x^4 + 5*x^5) + e
xp(x^2*exp(x))*(20*x - exp(x)*(20*x - 20)) - 5*x^2))/(4*x^3),x)
[Out]
(5*exp(exp(x)/x + (x*exp(-x^2*exp(x)))/4))/x
________________________________________________________________________________________
sympy [A] time = 0.52, size = 31, normalized size = 0.97
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(1/4*(((20*x-20)*exp(x)-20*x)*exp(exp(x)*x**2)+(-5*x**5-10*x**4)*exp(x)+5*x**2)*exp(1/4*(4*exp(x)*exp
(exp(x)*x**2)+x**2)/x/exp(exp(x)*x**2))/x**3/exp(exp(x)*x**2),x)
[Out]
5*exp((x**2/4 + exp(x)*exp(x**2*exp(x)))*exp(-x**2*exp(x))/x)/x
________________________________________________________________________________________