3.89.54 (3+eeee2ex4+2eex5+x6+x(2ex+eee2ex4+2eex5+x6+e2ex4+2eex5+x6(4e2e+xx310ee+xx46exx5)))dx

Optimal. Leaf size=28 3eeex4(ee+x)2+2x+3x

________________________________________________________________________________________

Rubi [F]  time = 10.16, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} (3+eeee2ex4+2eex5+x6+x(2ex+exp(ee2ex4+2eex5+x6+e2ex4+2eex5+x6)(4e2e+xx310ee+xx46exx5)))dx

Verification is not applicable to the result.

[In]

Int[3 + E^(E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + x)*(-2*E^x + E^(E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + E^(2*E)*x
^4 + 2*E^E*x^5 + x^6)*(-4*E^(2*E + x)*x^3 - 10*E^(E + x)*x^4 - 6*E^x*x^5)),x]

[Out]

3*x - 2*Defer[Int][E^(E^E^(x^4*(E^E + x)^2) + 2*x), x] - 4*Defer[Int][E^(2*E + E^E^(E^(2*E)*x^4 + 2*E^E*x^5 +
x^6) + E^(x^4*(E^E + x)^2) + 2*x + E^(2*E)*x^4 + 2*E^E*x^5 + x^6)*x^3, x] - 10*Defer[Int][E^(E + E^E^(E^(2*E)*
x^4 + 2*E^E*x^5 + x^6) + E^(x^4*(E^E + x)^2) + 2*x + E^(2*E)*x^4 + 2*E^E*x^5 + x^6)*x^4, x] - 6*Defer[Int][E^(
E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + E^(x^4*(E^E + x)^2) + 2*x + E^(2*E)*x^4 + 2*E^E*x^5 + x^6)*x^5, x]

Rubi steps

integral=3x+eeee2ex4+2eex5+x6+x(2ex+exp(ee2ex4+2eex5+x6+e2ex4+2eex5+x6)(4e2e+xx310ee+xx46exx5))dx=3x+(2eeee2ex4+2eex5+x6+2x2exp(eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x3(2e2e+5eex+3x2))dx=3x2eeee2ex4+2eex5+x6+2xdx2exp(eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x3(2e2e+5eex+3x2)dx=3x2eeex4(ee+x)2+2xdx2(2exp(2e+eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x3+5exp(e+eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x4+3exp(eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x5)dx=3x2eeex4(ee+x)2+2xdx4exp(2e+eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x3dx6exp(eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x5dx10exp(e+eee2ex4+2eex5+x6+ex4(ee+x)2+2x+e2ex4+2eex5+x6)x4dx

________________________________________________________________________________________

Mathematica [A]  time = 0.27, size = 37, normalized size = 1.32 eeee2ex4+2eex5+x6+2x+3x

Antiderivative was successfully verified.

[In]

Integrate[3 + E^(E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + x)*(-2*E^x + E^(E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + E^(
2*E)*x^4 + 2*E^E*x^5 + x^6)*(-4*E^(2*E + x)*x^3 - 10*E^(E + x)*x^4 - 6*E^x*x^5)),x]

[Out]

-E^(E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + 2*x) + 3*x

________________________________________________________________________________________

fricas [B]  time = 0.59, size = 119, normalized size = 4.25 (3xe(2e)e((xe(x6+2x5ee+x4e(2e))+e(x6+2x5ee+x4e(2e)+e(x6+2x5ee+x4e(2e))))e(x62x5eex4e(2e))+x+2e))e(2e)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*ex
p(exp(1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5
*exp(exp(1))+x^6))+x)+3,x, algorithm="fricas")

[Out]

(3*x*e^(2*e) - e^((x*e^(x^6 + 2*x^5*e^e + x^4*e^(2*e)) + e^(x^6 + 2*x^5*e^e + x^4*e^(2*e) + e^(x^6 + 2*x^5*e^e
 + x^4*e^(2*e))))*e^(-x^6 - 2*x^5*e^e - x^4*e^(2*e)) + x + 2*e))*e^(-2*e)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 2((3x5ex+5x4e(x+e)+2x3e(x+2e))e(x6+2x5ee+x4e(2e)+e(x6+2x5ee+x4e(2e)))+ex)e(x+e(e(x6+2x5ee+x4e(2e))))+3dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*ex
p(exp(1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5
*exp(exp(1))+x^6))+x)+3,x, algorithm="giac")

[Out]

integrate(-2*((3*x^5*e^x + 5*x^4*e^(x + e) + 2*x^3*e^(x + 2*e))*e^(x^6 + 2*x^5*e^e + x^4*e^(2*e) + e^(x^6 + 2*
x^5*e^e + x^4*e^(2*e))) + e^x)*e^(x + e^(e^(x^6 + 2*x^5*e^e + x^4*e^(2*e)))) + 3, x)

________________________________________________________________________________________

maple [A]  time = 0.26, size = 33, normalized size = 1.18




method result size



risch e2x+eex4(2xee+x2+e2e)+3x 33



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(
1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(e
xp(1))+x^6))+x)+3,x,method=_RETURNVERBOSE)

[Out]

-exp(2*x+exp(exp(x^4*(2*x*exp(exp(1))+x^2+exp(2*exp(1))))))+3*x

________________________________________________________________________________________

maxima [A]  time = 0.60, size = 34, normalized size = 1.21 3xe(2x+e(e(x6+2x5ee+x4e(2e))))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*ex
p(exp(1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5
*exp(exp(1))+x^6))+x)+3,x, algorithm="maxima")

[Out]

3*x - e^(2*x + e^(e^(x^6 + 2*x^5*e^e + x^4*e^(2*e))))

________________________________________________________________________________________

mupad [B]  time = 5.53, size = 36, normalized size = 1.29 3xe2xeeex6e2x5eeex4e2e

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(3 - exp(x + exp(exp(2*x^5*exp(exp(1)) + x^4*exp(2*exp(1)) + x^6)))*(2*exp(x) + exp(exp(2*x^5*exp(exp(1)) +
 x^4*exp(2*exp(1)) + x^6))*exp(2*x^5*exp(exp(1)) + x^4*exp(2*exp(1)) + x^6)*(6*x^5*exp(x) + 4*x^3*exp(2*exp(1)
)*exp(x) + 10*x^4*exp(exp(1))*exp(x))),x)

[Out]

3*x - exp(2*x)*exp(exp(exp(x^6)*exp(2*x^5*exp(exp(1)))*exp(x^4*exp(2*exp(1)))))

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((-4*x**3*exp(x)*exp(exp(1))**2-10*x**4*exp(x)*exp(exp(1))-6*x**5*exp(x))*exp(x**4*exp(exp(1))**2+2*
x**5*exp(exp(1))+x**6)*exp(exp(x**4*exp(exp(1))**2+2*x**5*exp(exp(1))+x**6))-2*exp(x))*exp(exp(exp(x**4*exp(ex
p(1))**2+2*x**5*exp(exp(1))+x**6))+x)+3,x)

[Out]

Timed out

________________________________________________________________________________________