3.89.54
Optimal. Leaf size=28
________________________________________________________________________________________
Rubi [F] time = 10.16, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[3 + E^(E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + x)*(-2*E^x + E^(E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + E^(2*E)*x
^4 + 2*E^E*x^5 + x^6)*(-4*E^(2*E + x)*x^3 - 10*E^(E + x)*x^4 - 6*E^x*x^5)),x]
[Out]
3*x - 2*Defer[Int][E^(E^E^(x^4*(E^E + x)^2) + 2*x), x] - 4*Defer[Int][E^(2*E + E^E^(E^(2*E)*x^4 + 2*E^E*x^5 +
x^6) + E^(x^4*(E^E + x)^2) + 2*x + E^(2*E)*x^4 + 2*E^E*x^5 + x^6)*x^3, x] - 10*Defer[Int][E^(E + E^E^(E^(2*E)*
x^4 + 2*E^E*x^5 + x^6) + E^(x^4*(E^E + x)^2) + 2*x + E^(2*E)*x^4 + 2*E^E*x^5 + x^6)*x^4, x] - 6*Defer[Int][E^(
E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + E^(x^4*(E^E + x)^2) + 2*x + E^(2*E)*x^4 + 2*E^E*x^5 + x^6)*x^5, x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.27, size = 37, normalized size = 1.32
Antiderivative was successfully verified.
[In]
Integrate[3 + E^(E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + x)*(-2*E^x + E^(E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + E^(
2*E)*x^4 + 2*E^E*x^5 + x^6)*(-4*E^(2*E + x)*x^3 - 10*E^(E + x)*x^4 - 6*E^x*x^5)),x]
[Out]
-E^(E^E^(E^(2*E)*x^4 + 2*E^E*x^5 + x^6) + 2*x) + 3*x
________________________________________________________________________________________
fricas [B] time = 0.59, size = 119, normalized size = 4.25
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*ex
p(exp(1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5
*exp(exp(1))+x^6))+x)+3,x, algorithm="fricas")
[Out]
(3*x*e^(2*e) - e^((x*e^(x^6 + 2*x^5*e^e + x^4*e^(2*e)) + e^(x^6 + 2*x^5*e^e + x^4*e^(2*e) + e^(x^6 + 2*x^5*e^e
+ x^4*e^(2*e))))*e^(-x^6 - 2*x^5*e^e - x^4*e^(2*e)) + x + 2*e))*e^(-2*e)
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*ex
p(exp(1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5
*exp(exp(1))+x^6))+x)+3,x, algorithm="giac")
[Out]
integrate(-2*((3*x^5*e^x + 5*x^4*e^(x + e) + 2*x^3*e^(x + 2*e))*e^(x^6 + 2*x^5*e^e + x^4*e^(2*e) + e^(x^6 + 2*
x^5*e^e + x^4*e^(2*e))) + e^x)*e^(x + e^(e^(x^6 + 2*x^5*e^e + x^4*e^(2*e)))) + 3, x)
________________________________________________________________________________________
maple [A] time = 0.26, size = 33, normalized size = 1.18
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(
1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(e
xp(1))+x^6))+x)+3,x,method=_RETURNVERBOSE)
[Out]
-exp(2*x+exp(exp(x^4*(2*x*exp(exp(1))+x^2+exp(2*exp(1))))))+3*x
________________________________________________________________________________________
maxima [A] time = 0.60, size = 34, normalized size = 1.21
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x^3*exp(x)*exp(exp(1))^2-10*x^4*exp(x)*exp(exp(1))-6*x^5*exp(x))*exp(x^4*exp(exp(1))^2+2*x^5*ex
p(exp(1))+x^6)*exp(exp(x^4*exp(exp(1))^2+2*x^5*exp(exp(1))+x^6))-2*exp(x))*exp(exp(exp(x^4*exp(exp(1))^2+2*x^5
*exp(exp(1))+x^6))+x)+3,x, algorithm="maxima")
[Out]
3*x - e^(2*x + e^(e^(x^6 + 2*x^5*e^e + x^4*e^(2*e))))
________________________________________________________________________________________
mupad [B] time = 5.53, size = 36, normalized size = 1.29
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(3 - exp(x + exp(exp(2*x^5*exp(exp(1)) + x^4*exp(2*exp(1)) + x^6)))*(2*exp(x) + exp(exp(2*x^5*exp(exp(1)) +
x^4*exp(2*exp(1)) + x^6))*exp(2*x^5*exp(exp(1)) + x^4*exp(2*exp(1)) + x^6)*(6*x^5*exp(x) + 4*x^3*exp(2*exp(1)
)*exp(x) + 10*x^4*exp(exp(1))*exp(x))),x)
[Out]
3*x - exp(2*x)*exp(exp(exp(x^6)*exp(2*x^5*exp(exp(1)))*exp(x^4*exp(2*exp(1)))))
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((-4*x**3*exp(x)*exp(exp(1))**2-10*x**4*exp(x)*exp(exp(1))-6*x**5*exp(x))*exp(x**4*exp(exp(1))**2+2*
x**5*exp(exp(1))+x**6)*exp(exp(x**4*exp(exp(1))**2+2*x**5*exp(exp(1))+x**6))-2*exp(x))*exp(exp(exp(x**4*exp(ex
p(1))**2+2*x**5*exp(exp(1))+x**6))+x)+3,x)
[Out]
Timed out
________________________________________________________________________________________