3.89.70 1+(3+5x4)log2(2)+log2(2)log(x1+1log2(2))log2(2)dx

Optimal. Leaf size=16 x(2+x4+log(x1+1log2(2)))

________________________________________________________________________________________

Rubi [B]  time = 0.02, antiderivative size = 33, normalized size of antiderivative = 2.06, number of steps used = 4, number of rules used = 2, integrand size = 33, number of rulesintegrand size = 0.061, Rules used = {12, 2295} xlog(x1+1log2(2))+x5+3x+xlog2(2)x(1+1log2(2))

Antiderivative was successfully verified.

[In]

Int[(1 + (3 + 5*x^4)*Log[2]^2 + Log[2]^2*Log[x^(1 + Log[2]^(-2))])/Log[2]^2,x]

[Out]

3*x + x^5 - x*(1 + Log[2]^(-2)) + x/Log[2]^2 + x*Log[x^(1 + Log[2]^(-2))]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rubi steps

integral=(1+(3+5x4)log2(2)+log2(2)log(x1+1log2(2)))dxlog2(2)=xlog2(2)+(3+5x4)dx+log(x1+1log2(2))dx=3x+x5x(1+1log2(2))+xlog2(2)+xlog(x1+1log2(2))

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 16, normalized size = 1.00 x(2+x4+log(x1+1log2(2)))

Antiderivative was successfully verified.

[In]

Integrate[(1 + (3 + 5*x^4)*Log[2]^2 + Log[2]^2*Log[x^(1 + Log[2]^(-2))])/Log[2]^2,x]

[Out]

x*(2 + x^4 + Log[x^(1 + Log[2]^(-2))])

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 29, normalized size = 1.81 (x5+2x)log(2)2+(xlog(2)2+x)log(x)log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(2)^2*log(x*exp(log(x)/log(2)^2))+(5*x^4+3)*log(2)^2+1)/log(2)^2,x, algorithm="fricas")

[Out]

((x^5 + 2*x)*log(2)^2 + (x*log(2)^2 + x)*log(x))/log(2)^2

________________________________________________________________________________________

giac [B]  time = 0.17, size = 38, normalized size = 2.38 (xlog(x)x)(1log(2)2+1)log(2)2+(x5+3x)log(2)2+xlog(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(2)^2*log(x*exp(log(x)/log(2)^2))+(5*x^4+3)*log(2)^2+1)/log(2)^2,x, algorithm="giac")

[Out]

((x*log(x) - x)*(1/log(2)^2 + 1)*log(2)^2 + (x^5 + 3*x)*log(2)^2 + x)/log(2)^2

________________________________________________________________________________________

maple [A]  time = 0.19, size = 37, normalized size = 2.31




method result size



default x5ln(2)2+2xln(2)2+ln(2)2ln(xx1ln(2)2)xln(2)2 37
risch xln(x1ln(2)2)+xln(x)iπxcsgn(ix)csgn(ix1ln(2)2)csgn(ixx1ln(2)2)2+iπxcsgn(ix)csgn(ixx1ln(2)2)22+iπxcsgn(ix1ln(2)2)csgn(ixx1ln(2)2)22iπxcsgn(ixx1ln(2)2)32+x5+2x 121



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(2)^2*ln(x*exp(ln(x)/ln(2)^2))+(5*x^4+3)*ln(2)^2+1)/ln(2)^2,x,method=_RETURNVERBOSE)

[Out]

1/ln(2)^2*(x^5*ln(2)^2+2*x*ln(2)^2+ln(2)^2*ln(x*x^(1/ln(2)^2))*x)

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 51, normalized size = 3.19 x(1log(2)2+1)log(2)2xlog(2)2log(x1log(2)2+1)(x5+3x)log(2)2xlog(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(2)^2*log(x*exp(log(x)/log(2)^2))+(5*x^4+3)*log(2)^2+1)/log(2)^2,x, algorithm="maxima")

[Out]

-(x*(1/log(2)^2 + 1)*log(2)^2 - x*log(2)^2*log(x^(1/log(2)^2 + 1)) - (x^5 + 3*x)*log(2)^2 - x)/log(2)^2

________________________________________________________________________________________

mupad [B]  time = 5.22, size = 16, normalized size = 1.00 x(ln(x1ln(2)2+1)+x4+2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((log(2)^2*log(x*x^(1/log(2)^2)) + log(2)^2*(5*x^4 + 3) + 1)/log(2)^2,x)

[Out]

x*(log(x^(1/log(2)^2 + 1)) + x^4 + 2)

________________________________________________________________________________________

sympy [B]  time = 1.12, size = 36, normalized size = 2.25 x5log(2)2+xlog(2)2log(x)+xlog(x)+2xlog(2)2log(2)2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(2)**2*ln(x*exp(ln(x)/ln(2)**2))+(5*x**4+3)*ln(2)**2+1)/ln(2)**2,x)

[Out]

(x**5*log(2)**2 + x*log(2)**2*log(x) + x*log(x) + 2*x*log(2)**2)/log(2)**2

________________________________________________________________________________________