3.89.78 10020e315x+8x2+ex(10+5x)+(5010e3+5ex5x+2x2)log(5010e3+5ex5x+2x22x)5010e3+5ex5x+2x2dx

Optimal. Leaf size=33 x+x(2+log(x+5(5e3x+12(ex+x))x))

________________________________________________________________________________________

Rubi [A]  time = 1.41, antiderivative size = 37, normalized size of antiderivative = 1.12, number of steps used = 10, number of rules used = 3, integrand size = 96, number of rulesintegrand size = 0.031, Rules used = {6741, 6742, 2548} xlog(2x25x+5ex+10(5e3)2x)+3x

Antiderivative was successfully verified.

[In]

Int[(100 - 20*E^3 - 15*x + 8*x^2 + E^x*(10 + 5*x) + (50 - 10*E^3 + 5*E^x - 5*x + 2*x^2)*Log[(50 - 10*E^3 + 5*E
^x - 5*x + 2*x^2)/(2*x)])/(50 - 10*E^3 + 5*E^x - 5*x + 2*x^2),x]

[Out]

3*x + x*Log[(5*E^x + 10*(5 - E^3) - 5*x + 2*x^2)/(2*x)]

Rule 2548

Int[Log[u_], x_Symbol] :> Simp[x*Log[u], x] - Int[SimplifyIntegrand[(x*D[u, x])/u, x], x] /; InverseFunctionFr
eeQ[u, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=100(1e35)15x+8x2+ex(10+5x)+(5010e3+5ex5x+2x2)log(5010e3+5ex5x+2x22x)5ex+50(1e35)5x+2x2dx=(2+x+x(5(112e3)+9x2x2)5ex+50(1e35)5x+2x2+log(5ex+50(1e35)5x+2x22x))dx=2x+x22+x(5(112e3)+9x2x2)5ex+50(1e35)5x+2x2dx+log(5ex+50(1e35)5x+2x22x)dx=2x+x22+xlog(5ex+10(5e3)5x+2x22x)10e3+5ex(1+x)+2(25+x2)5ex+50(1e35)5x+2x2dx+(2x35ex50(1e35)+5x2x2+5(11+2e3)x5ex+50(1e35)5x+2x2+9x25ex+50(1e35)5x+2x2)dx=2x+x22+xlog(5ex+10(5e3)5x+2x22x)+2x35ex50(1e35)+5x2x2dx+9x25ex+50(1e35)5x+2x2dx(5(112e3))x5ex+50(1e35)5x+2x2dx(1+x+x(5(112e3)+9x2x2)5ex+50(1e35)5x+2x2)dx=3x+xlog(5ex+10(5e3)5x+2x22x)+2x35ex50(1e35)+5x2x2dx+9x25ex+50(1e35)5x+2x2dx(5(112e3))x5ex+50(1e35)5x+2x2dxx(5(112e3)+9x2x2)5ex+50(1e35)5x+2x2dx=3x+xlog(5ex+10(5e3)5x+2x22x)+2x35ex50(1e35)+5x2x2dx+9x25ex+50(1e35)5x+2x2dx(5(112e3))x5ex+50(1e35)5x+2x2dx(2x35ex50(1e35)+5x2x2+5(11+2e3)x5ex+50(1e35)5x+2x2+9x25ex+50(1e35)5x+2x2)dx=3x+xlog(5ex+10(5e3)5x+2x22x)

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 34, normalized size = 1.03 3x+xlog(5010e3+5ex5x+2x22x)

Antiderivative was successfully verified.

[In]

Integrate[(100 - 20*E^3 - 15*x + 8*x^2 + E^x*(10 + 5*x) + (50 - 10*E^3 + 5*E^x - 5*x + 2*x^2)*Log[(50 - 10*E^3
 + 5*E^x - 5*x + 2*x^2)/(2*x)])/(50 - 10*E^3 + 5*E^x - 5*x + 2*x^2),x]

[Out]

3*x + x*Log[(50 - 10*E^3 + 5*E^x - 5*x + 2*x^2)/(2*x)]

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 30, normalized size = 0.91 xlog(2x25x10e3+5ex+502x)+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*log(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*e
xp(3)+8*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x, algorithm="fricas")

[Out]

x*log(1/2*(2*x^2 - 5*x - 10*e^3 + 5*e^x + 50)/x) + 3*x

________________________________________________________________________________________

giac [A]  time = 0.23, size = 30, normalized size = 0.91 xlog(2x25x10e3+5ex+502x)+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*log(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*e
xp(3)+8*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x, algorithm="giac")

[Out]

x*log(1/2*(2*x^2 - 5*x - 10*e^3 + 5*e^x + 50)/x) + 3*x

________________________________________________________________________________________

maple [A]  time = 0.28, size = 31, normalized size = 0.94




method result size



norman xln(5ex10e3+2x25x+502x)+3x 31
risch xln(x25+e3+x2ex25)xln(x)iπxcsgn(ix)csgn(i(x25+e3+x2ex25))csgn(i(x25+e3+x2ex25)x)2+iπxcsgn(ix)csgn(i(x25+e3+x2ex25)x)22+iπxcsgn(i(x25+e3+x2ex25))csgn(i(x25+e3+x2ex25)x)22+iπxcsgn(i(x25+e3+x2ex25)x)32iπxcsgn(i(x25+e3+x2ex25)x)2+iπx+xln(5)+3x 240



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*ln(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*exp(3)+8
*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x,method=_RETURNVERBOSE)

[Out]

x*ln(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+3*x

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 34, normalized size = 1.03 x(log(2)3)+xlog(2x25x10e3+5ex+50)xlog(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*log(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*e
xp(3)+8*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x, algorithm="maxima")

[Out]

-x*(log(2) - 3) + x*log(2*x^2 - 5*x - 10*e^3 + 5*e^x + 50) - x*log(x)

________________________________________________________________________________________

mupad [B]  time = 5.67, size = 25, normalized size = 0.76 x(ln(5ex25e35x2+x2+25x)+3)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(5*x + 10) - 20*exp(3) - 15*x + log(((5*exp(x))/2 - 5*exp(3) - (5*x)/2 + x^2 + 25)/x)*(5*exp(x) -
10*exp(3) - 5*x + 2*x^2 + 50) + 8*x^2 + 100)/(5*exp(x) - 10*exp(3) - 5*x + 2*x^2 + 50),x)

[Out]

x*(log(((5*exp(x))/2 - 5*exp(3) - (5*x)/2 + x^2 + 25)/x) + 3)

________________________________________________________________________________________

sympy [A]  time = 0.52, size = 29, normalized size = 0.88 xlog(x25x2+5ex25e3+25x)+3x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((5*exp(x)-10*exp(3)+2*x**2-5*x+50)*ln(1/2*(5*exp(x)-10*exp(3)+2*x**2-5*x+50)/x)+(5*x+10)*exp(x)-20*
exp(3)+8*x**2-15*x+100)/(5*exp(x)-10*exp(3)+2*x**2-5*x+50),x)

[Out]

x*log((x**2 - 5*x/2 + 5*exp(x)/2 - 5*exp(3) + 25)/x) + 3*x

________________________________________________________________________________________