3.89.78
Optimal. Leaf size=33
________________________________________________________________________________________
Rubi [A] time = 1.41, antiderivative size = 37, normalized size of antiderivative = 1.12,
number of steps used = 10, number of rules used = 3, integrand size = 96, = 0.031, Rules used
= {6741, 6742, 2548}
Antiderivative was successfully verified.
[In]
Int[(100 - 20*E^3 - 15*x + 8*x^2 + E^x*(10 + 5*x) + (50 - 10*E^3 + 5*E^x - 5*x + 2*x^2)*Log[(50 - 10*E^3 + 5*E
^x - 5*x + 2*x^2)/(2*x)])/(50 - 10*E^3 + 5*E^x - 5*x + 2*x^2),x]
[Out]
3*x + x*Log[(5*E^x + 10*(5 - E^3) - 5*x + 2*x^2)/(2*x)]
Rule 2548
Int[Log[u_], x_Symbol] :> Simp[x*Log[u], x] - Int[SimplifyIntegrand[(x*D[u, x])/u, x], x] /; InverseFunctionFr
eeQ[u, x]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.04, size = 34, normalized size = 1.03
Antiderivative was successfully verified.
[In]
Integrate[(100 - 20*E^3 - 15*x + 8*x^2 + E^x*(10 + 5*x) + (50 - 10*E^3 + 5*E^x - 5*x + 2*x^2)*Log[(50 - 10*E^3
+ 5*E^x - 5*x + 2*x^2)/(2*x)])/(50 - 10*E^3 + 5*E^x - 5*x + 2*x^2),x]
[Out]
3*x + x*Log[(50 - 10*E^3 + 5*E^x - 5*x + 2*x^2)/(2*x)]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 30, normalized size = 0.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*log(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*e
xp(3)+8*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x, algorithm="fricas")
[Out]
x*log(1/2*(2*x^2 - 5*x - 10*e^3 + 5*e^x + 50)/x) + 3*x
________________________________________________________________________________________
giac [A] time = 0.23, size = 30, normalized size = 0.91
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*log(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*e
xp(3)+8*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x, algorithm="giac")
[Out]
x*log(1/2*(2*x^2 - 5*x - 10*e^3 + 5*e^x + 50)/x) + 3*x
________________________________________________________________________________________
maple [A] time = 0.28, size = 31, normalized size = 0.94
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*ln(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*exp(3)+8
*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x,method=_RETURNVERBOSE)
[Out]
x*ln(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+3*x
________________________________________________________________________________________
maxima [A] time = 0.49, size = 34, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(x)-10*exp(3)+2*x^2-5*x+50)*log(1/2*(5*exp(x)-10*exp(3)+2*x^2-5*x+50)/x)+(5*x+10)*exp(x)-20*e
xp(3)+8*x^2-15*x+100)/(5*exp(x)-10*exp(3)+2*x^2-5*x+50),x, algorithm="maxima")
[Out]
-x*(log(2) - 3) + x*log(2*x^2 - 5*x - 10*e^3 + 5*e^x + 50) - x*log(x)
________________________________________________________________________________________
mupad [B] time = 5.67, size = 25, normalized size = 0.76
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((exp(x)*(5*x + 10) - 20*exp(3) - 15*x + log(((5*exp(x))/2 - 5*exp(3) - (5*x)/2 + x^2 + 25)/x)*(5*exp(x) -
10*exp(3) - 5*x + 2*x^2 + 50) + 8*x^2 + 100)/(5*exp(x) - 10*exp(3) - 5*x + 2*x^2 + 50),x)
[Out]
x*(log(((5*exp(x))/2 - 5*exp(3) - (5*x)/2 + x^2 + 25)/x) + 3)
________________________________________________________________________________________
sympy [A] time = 0.52, size = 29, normalized size = 0.88
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((5*exp(x)-10*exp(3)+2*x**2-5*x+50)*ln(1/2*(5*exp(x)-10*exp(3)+2*x**2-5*x+50)/x)+(5*x+10)*exp(x)-20*
exp(3)+8*x**2-15*x+100)/(5*exp(x)-10*exp(3)+2*x**2-5*x+50),x)
[Out]
x*log((x**2 - 5*x/2 + 5*exp(x)/2 - 5*exp(3) + 25)/x) + 3*x
________________________________________________________________________________________