3.89.80 (e4xlog(4)+2e4xlog(4)log(x))dx

Optimal. Leaf size=15 95+e4x2log(4)log(x)

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 11, normalized size of antiderivative = 0.73, number of steps used = 2, number of rules used = 1, integrand size = 18, number of rulesintegrand size = 0.056, Rules used = {2304} e4x2log(4)log(x)

Antiderivative was successfully verified.

[In]

Int[E^4*x*Log[4] + 2*E^4*x*Log[4]*Log[x],x]

[Out]

E^4*x^2*Log[4]*Log[x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rubi steps

integral=12e4x2log(4)+(2e4log(4))xlog(x)dx=e4x2log(4)log(x)

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 11, normalized size = 0.73 e4x2log(4)log(x)

Antiderivative was successfully verified.

[In]

Integrate[E^4*x*Log[4] + 2*E^4*x*Log[4]*Log[x],x]

[Out]

E^4*x^2*Log[4]*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.55, size = 11, normalized size = 0.73 2x2e4log(2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*x*exp(1)^4*log(2)*log(x)+2*x*exp(1)^4*log(2),x, algorithm="fricas")

[Out]

2*x^2*e^4*log(2)*log(x)

________________________________________________________________________________________

giac [B]  time = 1.16, size = 27, normalized size = 1.80 x2e4log(2)+(2x2log(x)x2)e4log(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*x*exp(1)^4*log(2)*log(x)+2*x*exp(1)^4*log(2),x, algorithm="giac")

[Out]

x^2*e^4*log(2) + (2*x^2*log(x) - x^2)*e^4*log(2)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 12, normalized size = 0.80




method result size



risch 2ln(x)ln(2)e4x2 12
default 2ln(x)ln(2)e4x2 14
norman 2ln(x)ln(2)e4x2 14



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(4*x*exp(1)^4*ln(2)*ln(x)+2*x*exp(1)^4*ln(2),x,method=_RETURNVERBOSE)

[Out]

2*ln(x)*ln(2)*exp(4)*x^2

________________________________________________________________________________________

maxima [B]  time = 0.37, size = 27, normalized size = 1.80 x2e4log(2)+(2x2log(x)x2)e4log(2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*x*exp(1)^4*log(2)*log(x)+2*x*exp(1)^4*log(2),x, algorithm="maxima")

[Out]

x^2*e^4*log(2) + (2*x^2*log(x) - x^2)*e^4*log(2)

________________________________________________________________________________________

mupad [B]  time = 5.12, size = 11, normalized size = 0.73 2x2e4ln(2)ln(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(2*x*exp(4)*log(2) + 4*x*exp(4)*log(2)*log(x),x)

[Out]

2*x^2*exp(4)*log(2)*log(x)

________________________________________________________________________________________

sympy [A]  time = 0.10, size = 14, normalized size = 0.93 2x2e4log(2)log(x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4*x*exp(1)**4*ln(2)*ln(x)+2*x*exp(1)**4*ln(2),x)

[Out]

2*x**2*exp(4)*log(2)*log(x)

________________________________________________________________________________________