3.89.85 125(25+(900+1050x+450x2+100x3+(60+60x+30x2)log(2)+2xlog2(2))log2(9))dx

Optimal. Leaf size=28 x+x2(x+3(2+x)x+log(2)5)2log2(9)

________________________________________________________________________________________

Rubi [B]  time = 0.04, antiderivative size = 80, normalized size of antiderivative = 2.86, number of steps used = 5, number of rules used = 2, integrand size = 46, number of rulesintegrand size = 0.043, Rules used = {12, 6} x4log2(9)+25x3log(2)log2(9)+6x3log2(9)+125x2(525+log2(2))log2(9)+65x2log(2)log2(9)+x+125xlog(2)log2(9)+36xlog2(9)

Antiderivative was successfully verified.

[In]

Int[(25 + (900 + 1050*x + 450*x^2 + 100*x^3 + (60 + 60*x + 30*x^2)*Log[2] + 2*x*Log[2]^2)*Log[9]^2)/25,x]

[Out]

x + 36*x*Log[9]^2 + 6*x^3*Log[9]^2 + x^4*Log[9]^2 + (12*x*Log[2]*Log[9]^2)/5 + (6*x^2*Log[2]*Log[9]^2)/5 + (2*
x^3*Log[2]*Log[9]^2)/5 + (x^2*(525 + Log[2]^2)*Log[9]^2)/25

Rule 6

Int[(u_.)*((w_.) + (a_.)*(v_) + (b_.)*(v_))^(p_.), x_Symbol] :> Int[u*((a + b)*v + w)^p, x] /; FreeQ[{a, b}, x
] &&  !FreeQ[v, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rubi steps

integral=125(25+(900+1050x+450x2+100x3+(60+60x+30x2)log(2)+2xlog2(2))log2(9))dx=x+125log2(9)(900+1050x+450x2+100x3+(60+60x+30x2)log(2)+2xlog2(2))dx=x+125log2(9)(900+450x2+100x3+(60+60x+30x2)log(2)+x(1050+2log2(2)))dx=x+36xlog2(9)+6x3log2(9)+x4log2(9)+125x2(525+log2(2))log2(9)+125(log(2)log2(9))(60+60x+30x2)dx=x+36xlog2(9)+6x3log2(9)+x4log2(9)+125xlog(2)log2(9)+65x2log(2)log2(9)+25x3log(2)log2(9)+125x2(525+log2(2))log2(9)

________________________________________________________________________________________

Mathematica [B]  time = 0.03, size = 59, normalized size = 2.11 x+x4log2(9)+125x(15+log(2))log2(9)+25x3(15+log(2))log2(9)+125x2(525+30log(2)+log2(2))log2(9)

Antiderivative was successfully verified.

[In]

Integrate[(25 + (900 + 1050*x + 450*x^2 + 100*x^3 + (60 + 60*x + 30*x^2)*Log[2] + 2*x*Log[2]^2)*Log[9]^2)/25,x
]

[Out]

x + x^4*Log[9]^2 + (12*x*(15 + Log[2])*Log[9]^2)/5 + (2*x^3*(15 + Log[2])*Log[9]^2)/5 + (x^2*(525 + 30*Log[2]
+ Log[2]^2)*Log[9]^2)/25

________________________________________________________________________________________

fricas [A]  time = 0.53, size = 51, normalized size = 1.82 425(25x4+x2log(2)2+150x3+525x2+10(x3+3x2+6x)log(2)+900x)log(3)2+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4/25*(2*x*log(2)^2+(30*x^2+60*x+60)*log(2)+100*x^3+450*x^2+1050*x+900)*log(3)^2+1,x, algorithm="fric
as")

[Out]

4/25*(25*x^4 + x^2*log(2)^2 + 150*x^3 + 525*x^2 + 10*(x^3 + 3*x^2 + 6*x)*log(2) + 900*x)*log(3)^2 + x

________________________________________________________________________________________

giac [A]  time = 0.19, size = 51, normalized size = 1.82 425(25x4+x2log(2)2+150x3+525x2+10(x3+3x2+6x)log(2)+900x)log(3)2+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4/25*(2*x*log(2)^2+(30*x^2+60*x+60)*log(2)+100*x^3+450*x^2+1050*x+900)*log(3)^2+1,x, algorithm="giac
")

[Out]

4/25*(25*x^4 + x^2*log(2)^2 + 150*x^3 + 525*x^2 + 10*(x^3 + 3*x^2 + 6*x)*log(2) + 900*x)*log(3)^2 + x

________________________________________________________________________________________

maple [A]  time = 0.04, size = 53, normalized size = 1.89




method result size



default 4ln(3)2(x2ln(2)2+ln(2)(10x3+30x2+60x)+25x4+150x3+525x2+900x)25+x 53
gosper x(4ln(2)2ln(3)2x+40ln(2)ln(3)2x2+100x3ln(3)2+120xln(2)ln(3)2+600x2ln(3)2+240ln(2)ln(3)2+2100xln(3)2+3600ln(3)2+25)25 76
norman (8ln(2)ln(3)25+24ln(3)2)x3+(48ln(2)ln(3)25+144ln(3)2+1)x+(4ln(3)2ln(2)225+24ln(2)ln(3)25+84ln(3)2)x2+4x4ln(3)2 77
risch 4x2ln(3)2ln(2)225+8ln(2)ln(3)2x35+4x4ln(3)2+24ln(2)ln(3)2x25+24x3ln(3)2+48xln(2)ln(3)25+84x2ln(3)2+144xln(3)2+x 81



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(4/25*(2*x*ln(2)^2+(30*x^2+60*x+60)*ln(2)+100*x^3+450*x^2+1050*x+900)*ln(3)^2+1,x,method=_RETURNVERBOSE)

[Out]

4/25*ln(3)^2*(x^2*ln(2)^2+ln(2)*(10*x^3+30*x^2+60*x)+25*x^4+150*x^3+525*x^2+900*x)+x

________________________________________________________________________________________

maxima [A]  time = 0.37, size = 51, normalized size = 1.82 425(25x4+x2log(2)2+150x3+525x2+10(x3+3x2+6x)log(2)+900x)log(3)2+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4/25*(2*x*log(2)^2+(30*x^2+60*x+60)*log(2)+100*x^3+450*x^2+1050*x+900)*log(3)^2+1,x, algorithm="maxi
ma")

[Out]

4/25*(25*x^4 + x^2*log(2)^2 + 150*x^3 + 525*x^2 + 10*(x^3 + 3*x^2 + 6*x)*log(2) + 900*x)*log(3)^2 + x

________________________________________________________________________________________

mupad [B]  time = 0.07, size = 62, normalized size = 2.21 4ln(3)2x4+4ln(3)2(30ln(2)+450)x375+2ln(3)2(60ln(2)+2ln(2)2+1050)x225+(4ln(3)2(60ln(2)+900)25+1)x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((4*log(3)^2*(1050*x + log(2)*(60*x + 30*x^2 + 60) + 2*x*log(2)^2 + 450*x^2 + 100*x^3 + 900))/25 + 1,x)

[Out]

4*x^4*log(3)^2 + x*((4*log(3)^2*(60*log(2) + 900))/25 + 1) + (4*x^3*log(3)^2*(30*log(2) + 450))/75 + (2*x^2*lo
g(3)^2*(60*log(2) + 2*log(2)^2 + 1050))/25

________________________________________________________________________________________

sympy [B]  time = 0.08, size = 88, normalized size = 3.14 4x4log(3)2+x3(8log(2)log(3)25+24log(3)2)+x2(4log(2)2log(3)225+24log(2)log(3)25+84log(3)2)+x(1+48log(2)log(3)25+144log(3)2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(4/25*(2*x*ln(2)**2+(30*x**2+60*x+60)*ln(2)+100*x**3+450*x**2+1050*x+900)*ln(3)**2+1,x)

[Out]

4*x**4*log(3)**2 + x**3*(8*log(2)*log(3)**2/5 + 24*log(3)**2) + x**2*(4*log(2)**2*log(3)**2/25 + 24*log(2)*log
(3)**2/5 + 84*log(3)**2) + x*(1 + 48*log(2)*log(3)**2/5 + 144*log(3)**2)

________________________________________________________________________________________