Optimal. Leaf size=17 \[ \frac {x}{-1-x^2+\log (1-4 x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1-8 x-x^2+4 x^3+(-1+4 x) \log (1-4 x)}{-1+4 x-2 x^2+8 x^3-x^4+4 x^5+\left (2-8 x+2 x^2-8 x^3\right ) \log (1-4 x)+(-1+4 x) \log ^2(1-4 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+8 x+x^2-4 x^3-(-1+4 x) \log (1-4 x)}{(1-4 x) \left (1+x^2-\log (1-4 x)\right )^2} \, dx\\ &=\int \left (\frac {2 x \left (-2-x+4 x^2\right )}{(-1+4 x) \left (1+x^2-\log (1-4 x)\right )^2}+\frac {1}{-1-x^2+\log (1-4 x)}\right ) \, dx\\ &=2 \int \frac {x \left (-2-x+4 x^2\right )}{(-1+4 x) \left (1+x^2-\log (1-4 x)\right )^2} \, dx+\int \frac {1}{-1-x^2+\log (1-4 x)} \, dx\\ &=2 \int \left (-\frac {1}{2 \left (1+x^2-\log (1-4 x)\right )^2}+\frac {x^2}{\left (1+x^2-\log (1-4 x)\right )^2}-\frac {1}{2 (-1+4 x) \left (1+x^2-\log (1-4 x)\right )^2}\right ) \, dx+\int \frac {1}{-1-x^2+\log (1-4 x)} \, dx\\ &=2 \int \frac {x^2}{\left (1+x^2-\log (1-4 x)\right )^2} \, dx-\int \frac {1}{\left (1+x^2-\log (1-4 x)\right )^2} \, dx-\int \frac {1}{(-1+4 x) \left (1+x^2-\log (1-4 x)\right )^2} \, dx+\int \frac {1}{-1-x^2+\log (1-4 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.34, size = 17, normalized size = 1.00 \begin {gather*} \frac {x}{-1-x^2+\log (1-4 x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.44, size = 18, normalized size = 1.06 \begin {gather*} -\frac {x}{x^{2} - \log \left (-4 \, x + 1\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 18, normalized size = 1.06 \begin {gather*} -\frac {x}{x^{2} - \log \left (-4 \, x + 1\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 19, normalized size = 1.12
method | result | size |
norman | \(-\frac {x}{x^{2}-\ln \left (-4 x +1\right )+1}\) | \(19\) |
risch | \(-\frac {x}{x^{2}-\ln \left (-4 x +1\right )+1}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 18, normalized size = 1.06 \begin {gather*} -\frac {x}{x^{2} - \log \left (-4 \, x + 1\right ) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.54, size = 18, normalized size = 1.06 \begin {gather*} -\frac {x}{x^2-\ln \left (1-4\,x\right )+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 12, normalized size = 0.71 \begin {gather*} \frac {x}{- x^{2} + \log {\left (1 - 4 x \right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________